Interested in the next step in your machining career? Consider Lawrence Livermore National Laboratory’s (LLNL’s) elite machinist apprenticeship, which now accepting applications for its 2025 cohort. The California-certified program is one of the oldest in the nation, and one of the most unique. Apprentices are trained in LLNL’s complete onsite manufacturing complex, which…
Imagine a world of manufacturing no longer constrained by complexity or traditional materials, and where previously impossible engineering designs are suddenly possible. That’s the promise of additive manufacturing (AM), the focus of the latest episode of the Big Ideas Lab podcast. The episode delves into the past, present and future of AM, featuring experts from Lawrence…
Researchers at Lawrence Livermore National Laboratory (LLNL) have developed a new method to 3D print sturdy silicone structures that are bigger, taller, thinner and more porous than ever before. The team’s two-part “fast cure” silicone-based ink for direct ink writing mixes just before printing and sets quickly at room temperature, allowing for longer print times,…
Malik Wagih is a 2024 Lawrence Fellow in the Physical and Life Sciences Directorate’s Materials Science Division at Lawrence Livermore National Laboratory (LLNL), where he studies defects in metals. His journey to materials science research at Livermore has taken him across the country and the world. Wagih is originally from Cairo, Egypt, where he enjoyed playing soccer…
When laser energy is deposited in a target material, numerous complex processes take place at length and time scales that are too small to visually observe. To study and ultimately fine-tune such processes, researchers look to computer modeling. However, these simulations rely on accurate equation of state (EOS) models to describe the thermodynamic properties — such as…
The Department of Energy’s (DOE) High-Performance Computing for Energy Innovation (HPC4EI) program recently announced the funding of $4 million for 10 new projects, including three collaborations involving Lawrence Livermore National Laboratory (LLNL) aimed at improving carbon capture, energy savings and CO2 reduction. In a partnership of LLNL, First Light Solutions and…
The architectural design of electrodes offers new opportunities for next-generation electrochemical energy storage devices (EESDs) by increasing surface area, thickness and storage capacity. But conventional thick electrodes increase ion diffusion length and cause larger ion-concentration gradients, limiting reaction kinetics, including storage capacity. To overcome these…
Electrostatic discharge (ESD) protection is a significant concern in the chemical and electronics industries. In electronics, ESD often causes integrated circuit failures due to rapid voltage and current discharges from charged objects, such as human fingers or tools. With the help of 3D printing techniques, researchers at Lawrence Livermore National Laboratory (LLNL) are …
The interfaces between individual crystals in a material, known as grain boundaries (GBs), play a critical role in dictating the strength, durability and overall performance of a material. For this reason, GB phase transitions — abrupt changes at a material’s interface resulting in distinct structures and properties — are becoming increasingly recognized as a new frontier…
In a significant advancement for metal additive manufacturing, researchers at Lawrence Livermore National Laboratory (LLNL) and their academic partners have developed a groundbreaking technique that enhances the optical absorptivity of metal powders used in 3D printing. The innovative approach, which involves creating nanoscale surface features on metal powders, promises…
Materials are crucial to modern technology, especially those used in extreme environments like nuclear energy systems and military applications. These materials need to withstand intense pressure, temperature and corrosion. Understanding their lattice-level behavior under such conditions is essential for developing next-generation materials that are more resilient, cheaper…
In the rapidly evolving world of 3D printing, the pursuit of faster, more efficient and versatile production methods is never-ending. Traditional 3D printing techniques, while groundbreaking, are often time-consuming and limited in the kinds of materials they can use as feedstock. But, through a new process a Lawrence Livermore National Laboratory (LLNL) team is calling…
Lawrence Livermore National Laboratory (LLNL) has big ideas and is showing the world in the Big Ideas Lab weekly podcast that takes listeners behind the fences and into its heart. “This is where big ideas come to life,” said Lab Director Kim Budil. “To do this, we bring together dynamic teams of many different disciplines — laser physicists and materials scientists and…
Determining the relationship between microstructure features and their properties is crucial for improving material performance and advancing the design of next-generation structural and functional materials. However, this task is inherently challenging. To address the challenges, LLNL scientists developed an efficient and comprehensive computational framework to decipher…
A new electrochemical method can make chemical production cleaner and more energy-efficient. Using thin film nickel anodes, a team of Lawrence Livermore National Laboratory (LLNL) scientists and collaborators have figured out how to clean up chemical production. When studying a new electrochemical reaction, using thin films is important because they give a consistent…
Shock experiments are widely used to understand the mechanical and electronic properties of matter under extreme conditions, like planetary impacts by meteorites. However, after the shock occurs, a clear description of the post-shock thermal state and its impacts on material properties is still lacking. Lawrence Livermore National Laboratory (LLNL) scientists used ultra…
A Lawrence Livermore National Laboratory (LLNL) team has found that pure metallic carbon nanotubes are best at transporting molecules. Molecule separations play an ever-increasing role in modern technology from water desalination to harvesting critical materials to high-value chemicals and pharmaceuticals manufacturing. To enhance water and proton transport, LLNL…
Coupling electrochemical conversion of the greenhouse gas CO2 with renewable electricity sources — such as solar and wind — promises green production of high-demand chemicals and transportation fuels. Carbon dioxide coupling products such as ethylene, ethanol and acetic acid are particularly useful as feedstocks for the chemical industry and powering vehicles. While…
Nearly 150 members of the signal and image science community recently came together to discuss the latest advances in the field and connect with colleagues, friends and potential collaborators at the 28th annual Center for Advanced Image and Signal Science (CASIS) workshop. Held at the University of California Livermore Collaboration Center (UCLCC) for the first time, the…
Lawrence Livermore National Laboratory (LLNL) Director Kim Budil and other LLNL staff joined Department of Energy (DOE) Deputy Secretary David Turk, National Nuclear Security Administration (NNSA) Administrator Jill Hruby, DOE Under Secretary for Science and Innovation Geraldine Richmond, DOE Director of the Office of Critical and Emerging Technologies Helena Fu, U.S…