Capacitive deionization (CDI) is an emerging class of water desalination technologies that use cyclic charging and discharging of electrodes to reduce or enrich the salinity of incoming water. The desalination characteristics of CDI are strongly influenced by the resistive components of the system. To better understand this process, a team of Lawrence Livermore National…
LLNL scientists have discovered a new method to add an antireflective metasurface layer on laser optics glass.
Researchers have spent decades studying the properties of water and how they change when there are disruptions to their normal behavior. Research on the topic has a wide range of applications, from biochemical systems to water desalination. A team of scientists from Lawrence Livermore National Laboratory (LLNL), Argonne National Laboratory and the University of Chicago…
Two Lawrence Livermore National Laboratory (LLNL) scientists have discovered a new mechanism for ignition of high explosives that explains the unusual detonation properties of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). The research will allow for systematic improvements to continuum mechanics models used to assess the performance and safety of the material accurately and…
Lawrence Livermore National Laboratory (LLNL) scientists have taken a step forward in the design of future materials with improved performance by analyzing its microstructure using AI. The work recently appeared online in the journal Computational Materials Science. Technological progress in materials science applications spanning electronic, biomedical, alternate energy,…
Trying to determine how negatively charged ions squeeze through a carbon nanotube 20,000 times smaller than a human hair is no easy feat. Not only did Lawrence Livermore National Laboratory (LLNL) scientists do that but they found that those ions are unexpectedly picky depending on the anion (a negatively charged ion). The research appears in ACS Nano. Inner pores of…
Lawrence Livermore National Laboratory (LLNL) researchers are studying ways to safely and rapidly remove viral threats from N95 respirators, without compromising the device’s fit and its ability to filter airborne particles, so they can be reused. As seen during the COVID-19 pandemic, a shortage of personal protective equipment, including surgical masks and respirators,…
A team of Lawrence Livermore National Laboratory (LLNL) materials and computer scientists developed machine learning tools that extract and structure information from the text and figures of nanomaterials articles using state-of-the-art natural language processing, image analysis, computer vision and visualization techniques. They are applying this technique to COVID-19…
Combining high-fidelity computer simulations with ultra-high-speed X-ray imaging, researchers at Lawrence Livermore National Laboratory (LLNL) have discovered a strategy for reducing or even eliminating defects in parts built through a common, laser-based metal 3D-printing process. In work published by the journal Science, a research team at LLNL, along with collaborators…
The tiny fill-tube used to inject NIF’s high-density carbon capsules with cryogenic fuel is also known to reduce the performance of implosions, and LLNL researchers are exploring several methods that could diminish these negative effects.
Chance Carter (MSD) has been named a fellow for the Society of Applied Spectroscopy (SAS). Fellowship is intended to recognize outstanding members for their service to the society and exceptional contributions to spectroscopy. Chance will be recognized at a special ceremony during SAS’s national meeting in October in Nevada.
A special issue of the journal Propellants, Explosives, Pyrotechnics was recently released that highlights multiscale modeling and experiments, an area of energetic materials science and technology in which LLNL researchers have played a leading role for some time. The issue features the work of MSD’s Keo Springer, Will Bassett, Sorin Bastea, Svjetlana Stekovic,…
Laboratory materials scientist Aurélien Perron (MSD) was selected to receive the 2020 Young Leaders Professional Development Award from the Functional Materials Division of The Minerals, Metals, and Materials Society (TMS). This award was created to enhance the professional development of dynamic young people from the five technical divisions of TMS by helping them…
Work by PLS scientists Jae-Hyuck Yoo and Andrew Lange (both MSD) and Engineering’s John Chesser, Steve Falabella, and Selim Elhadj was recently highlighted in Physica Status Solidi A: Applications and Materials Science as the November 2019 cover story. The research described in the article explores guidelines for designing materials with high laser damage lifetimes. To…
Laser powder bed fusion (LPBF) is a method of additive manufacturing characterized by the rapid scanning of a high-powered laser over a thin bed of metallic powder to create a single layer, which may then be built upon to form larger structures. Most melting, resolidification, and subsequent cooling take place at higher rates and with higher thermal gradients than in…
Livermore’s Joel Berry (MSD) has coauthored a pair of papers describing promising methods for controlling the structure and properties of 2D materials. In one paper, Berry and his colleagues at the University of Pennsylvania and University of Chicago propose a new atomic-scale approach to form nano- to macro-patterned thin films with tailored properties (mechanical,…
The predictive models that describe the fate and transport of radioactive materials in the atmosphere following a nuclear incident (explosion or reactor accident) assume that uranium-bearing particulates would attain chemical equilibrium during vapor condensation. In a new study, funded by the Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D…
Officials from the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) gathered with elected leaders and industry professionals recently to dedicate and tour the Advanced Manufacturing Laboratory, a new collaborative hub intended to spur public-private partnerships. The $10 million, 14,000-square-foot facility, located in the…
Driven by the success of machine learning (ML) in commercial applications such as product recommendations and advertising, researchers are attempting to apply ML tools to scientific data analyzation. One such application area is materials science, where ML methods could accelerate the selection, development, and discovery of materials by learning structure–property…
Former Secretary of Energy Rick Perry recognized Lawrence Livermore National Laboratory (LLNL) staff with six Secretary’s Honor Awards at a ceremony at Department of Energy (DOE) headquarters. The Secretary’s Honor Awards are bestowed on teams that have achieved a singular accomplishment that demonstrates a high level of performance and dedication to public service. As his…