Archived News Releases are no longer maintained. Click here for recent News Releases.


Glenn T. Seaborg Institute

Annie Kersting

Modeling the subsurface movement of radionuclides, LLNL Science & Technology Review, May 2005

Predicting the bizarre properties of plutonium, LLNL Science & Technology Review, December 2008

Plutonium up close...way up close, LLNL Science & Technology Review, March 2001

LLNL's Center for Accelerator Mass Spectrometry

Social Media Logos Follow LLNL on YouTube Subscribe to LLNL's RSS feed Follow LLNL on Facebook Follow LLNL on Twitter Follow LLNL on Flickr
  Contact: Anne M. Stark
  Phone: (925) 422-9799
June 26, 2009

New research may help address radionuclide contamination at DOE sites

LIVERMORE, Calif. — Five years from now, Lab scientists will be able to better determine how, when and why plutonium moves in soil and groundwater.

The way to predict how plutonium is transported in groundwater away from a site is by looking at the dominant geochemical processes that control plutonium's (Pu) behavior in the subsurface at environmental levels. But that isn't always so easy.

Annie Kersting, director of LLNL's Glenn T. Seaborg Institute

A $6 million five-year proposal funded by the Department of Energy's Office of Science, Biological and Environmental Research (BER), will allow about a dozen LLNL scientists to study Pu transport at concentration levels at the picomolar to attomolar scale (that's 10¯-15 to 10¯-18 moles/liter, equivalent to dissolving one grain of salt in 100 Olympic-size swimming pools).

Plutonium can move on small particulates, called colloids, which are often found in groundwater, but the conditions that control whether Pu migrates or remains immobile are not well understood.

The accelerator mass spectrometer is one of the unique state-of-the-art analytical and computational facilities at LLNL to achieve femtomolar concentrations and nanometer scales.

That's where the Lab's team comes in. Annie Kersting, director of the Lab's Glenn T. Seaborg Institute and manager of the study, said previous experiments of plutonium movement in the subsurface were performed at Pu concentrations orders of magnitude higher than those observed in the field.

Now they will do experiments at much lower, environmental conditions.

Ultimately the research will help in the development of conceptual models for Pu transport across the Department of Energy complex. The model will provide DOE with the scientific basis to support decisions for the remediation and long-term stewardship of legacy sites, Kersting said.

“We can provide DOE an understanding of when and how Pu is transported in groundwater,” she said. “What process did it go through to get there, could it affect people downstream of DOE sites, and how can we predict and monitor Pu contamination?”

Taking advantage of the unique facilities housed at Livermore's institutes, the team will be able to measure minute amounts of Pu, similar to the concentrations found in soil and groundwater, with the Lab's secondary ion mass spectrometer (NanoSIMS), the Transmission Electron Microscope (Titan SuperSTEM) and CAMS (an accelerator mass spectrometer). “With these tools, we'll be able to identify where the Pu is sited on a colloid, study the behavior of Pu at extremely low concentrations and identify the geochemical processes controlling its mobility,” Kersting said.

Electron microscope image
A scanning electron microscope image of mineral colloids containing plutonium filtered from groundwater. Mineral colloids consist of clay and zeolites, common secondary minerals found in rocks at the Nevada Test Site.

Mavrik Zavarin, the lead scientist, said it's likely the team will discover that Pu behavior is very much dependent on concentration. “At very low concentrations, Pu will interact with groundwater, minerals and microbes in ways we could not have predicted based on past experiments,” he said. “Our team at LLNL has a unique opportunity to study Pu chemistry under environmentally relevant conditions.”

For example, the image to the right shows Pu precipitates clearly identified on a mineral colloid.

Laboratory results will be compared to field samples taken from three DOE sites: Nevada Test Site, Rocky Flats and the Hanford Site. Pu-containing colloids will be collected and characterized in terms of their inorganic surfaces, associated organic compounds/coatings and possible microbial associations.

The Livermore team includes: Kersting, Zavarin, Susan Carroll, Robert Maxwell, Zurong Dai, Ross Williams, Scott Tumey, Pihong Zhao, Ruth Tinnacher, Patrick Huang and Ruth Kips. Collaborators include Brian Powell from Clemson University and Duane Moser from the Desert Research Institute

Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory that develops science and engineering technology and provides innovative solutions to our nation's most important challenges. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.