Archived News Releases are no longer maintained. Click here for recent News Releases.

More
Information

Astrophysicists quash alternative theory of star formation, LLNL news release, Nov. 17, 2005

Ring around a stellar shell: A tale of scientific serendipity, Science and Technology Review, May/June 2008

A closer look at nucleosynthesis, Science and Technology Review, July/August 2007

Science at the extremes: Laboratory Astrophysics, NIF and Photon Science

Building a virtual telescope, Science and Technology Review, May 2002

Social Media Logos Follow LLNL on YouTube Subscribe to LLNL's RSS feed Follow LLNL on Facebook Follow LLNL on Twitter Follow LLNL on Flickr
  Contact: Anne M. Stark
  Phone: (925) 422-9799
  E-mail: stark8@llnl.gov
  FOR IMMEDIATE RELEASE
January 15, 2009
NR-09-01-04

Scientists solve longstanding astronomy mystery

LIVERMORE, Calif. – Scientists may have solved one of the most longstanding astrophysical mysteries of all times: How massive stars – up to 120 times the mass of our sun – form without blowing away the clouds of gas and dust that feed their growth.

New research by Lawrence Livermore National Laboratory, University of California, Santa Cruz and UC Berkeley has shown how a massive star can grow despite outward-flowing radiation pressure that exceeds the gravitational force pulling material inward. The study appears in the Jan. 15 online edition of Science Express.

Massive Stars
Volume renderings of the density field in a region of the simulation at 55,000 years of evolution. The left panel shows a polar view, and the right panel shows an equatorial view. The fingers feeding the equatorial disk are clearly visible.
Click for high resolution image: [polar view] or [equatorial view]

Using 3-D radiation hydrodynamics simulations, the group, which includes Livermore’s Richard Klein, who also is an adjunct professor at UC Berkeley, and his LLNL postdoc Andrew Cunningham, unexpectedly discovered that these massive stars also tend to occur in binary or multiple star systems.

“Originally, we were just exploring the physics of massive star formation,” Klein said. “As we were looking at the physics, we found that gravitational instabilities cause companion stars to form around massive stars.”

Massive stars produce so much light that the radiation pressure they exert on the gas and dust around them is stronger than their gravitational attraction, a circumstance that has long been expected to prevent them from growing by accretion (the growth of a massive object by gravitationally attracting more matter).

“We didn’t set out to solve that question, so it was a nice side benefit of the study,” said Mark Krumholz, lead author and an assistant professor of astronomy and astrophysics at the UC Santa Cruz said. “The main finding is that radiation pressure does not limit the growth of massive stars.”

Earlier studies suggested that radiation pressure would blow away the raw materials of star formation before a star could grow much larger than about 20 times the mass of the sun. But astronomers have seen stars much more massive than that.

The team spent years developing complex computer codes for simulating the processes of star formation. Combined with advances in computer technology, their latest code (called ORION) enabled them to run a detailed 3-D simulation of the collapse of an enormous interstellar gas cloud to form a massive star.

“Logically, we thought the massive amounts of radiation pressure would stop the star in its tracks from growing any larger,” Klein said. “But instead, gravitational instabilities channeled gas onto the star system through disks and filaments, sort of like fingers, that self-shield against the radiation, while allowing the radiation to escape through optically thin bubbles.”

Radiation pressure is the force exerted by electromagnetic radiation on the surfaces it hits. The effect is negligible for ordinary light, but it becomes significant in the interiors of stars due to the intensity of the radiation. In massive stars, radiation pressure is the dominant force counteracting gravity to prevent the further collapse of the star.

The rotation of the gas cloud as it collapses leads to the formation of a disk of material feeding onto the growing “protostar.” The disk is gravitationally unstable, causing it to clump and form a series of small secondary stars, most of which end up colliding and merging with the central protostar. In the simulation, one secondary star became massive enough to break away and acquire its own disk, growing into a massive companion star. A third small star formed and was ejected into a wide orbit before falling back in and merging with the primary star.

When the researchers stopped the simulation, after allowing it to evolve for virtually 57,000 years of time, the two stars had masses of 41.5 and 29.2 times the mass of the sun and were circling each other in a fairly wide orbit.

This research was funded by the National Science Foundation, NASA, and the U.S. Department of Energy.



Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory that develops science and engineering technology and provides innovative solutions to our nation's most important challenges. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.