Keyword Search

Back to open positions

Computational Protein Design Scientist

Entry Level | Full-time
Engineering | livermore, CA | 09/19/2024

Apply Now  

Company Description

Join us and make YOUR mark on the World!

Are you interested in joining some of the brightest talent in the world to strengthen the United States’ security? Come join Lawrence Livermore National Laboratory (LLNL) where our employees apply their expertise to create solutions for BIG ideas that make our world a better place.

We are committed to a diverse and equitable workforce with an inclusive culture that values and celebrates the diversity of our people, talents, ideas, experiences, and perspectives. This is important for continued success of the Laboratory’s mission.

Pay Range

$110,700 - $170,556 Annually

$110,700 - $142,128 Annually for the SES.1 level

$132,810 - $170,556 Annually for the SES.2 level

This is the lowest to highest salary we in good faith believe we would pay for this role at the time of this posting.  An employee’s position within the salary range will be based on several factors including, but not limited to, specific competencies, relevant education, qualifications, certifications, experience, skills, seniority, geographic location, performance, and business or organizational needs.

Job Description

We have multiple openings for Computational Bioengineers who will conduct research leading to our next-generation, machine learning-driven computational pipeline for protein design and optimizing protein-protein interactions as part of the Center for Predictive Bioresilience (CPB). CPB is an exciting and fast-paced engineering center combining predictive computational modeling, machine learning, and experimental biology to develop medical countermeasures.

You will work within a multi-disciplinary team with computational expertise in machine learning (ML), molecular simulation, optimization, and protein structure bioinformatics, and interface with our experimental team generating large datasets with novel high throughput assays aimed at informing predictive model development. You will leverage in-house computational tools and work to develop new machine-learning-based approaches and tools to design and optimize proteins (antibodies, immunogens, etc.) as therapeutics and vaccines. You will also work closely with an existing ML team to understand current capabilities and jointly develop a vision for development of next generation protein design models and tools. You will be team-oriented and have experience working in a team environment to achieve common goals. These positions will be in the Computational Engineering Division (CED), within the Engineering Directorate, matrixed to the Center for Predictive Bioresilience.

These positions will be filled at either level based on knowledge and related experience as assessed by the responsibilities (outlined below) will be assigned if hired at the higher level.

You will

  • Work closely with project scientists and engineers in evaluating and implementing computational frameworks (e.g., large language model-based) optimized for protein design tasks.
  • Contribute to the development of analysis methodologies; analyze data; document research through presentations and peer-reviewed journal articles.
  • Support technical activities for new capability development and provide solutions in solving technical problems of limited complexity using standard techniques and methodologies.
  • Participate in the completion of project milestones and contribute to the development of organizational goals and objectives.
  • Document methods and ensure quality standards for project deliverables.
  • Perform other duties as assigned.

Additional job responsibilities, at the SES.2 level

  • Balance multiple projects/tasks and priorities of customers and partners to ensure deadlines are met, while working independently with minimal direction within scope of the assignment.
  • Support moderately complex research projects that require the creative use of established or innovative methods, working with competing priorities, and implementing advanced research concepts in a multidisciplinary team environment where dedication and deadlines are important to project success.
  • Routinely interact with technical contacts at sponsor and partner organizations.
  • Publish research results in external peer-reviewed scientific journals and participate in conferences and workshops.

Qualifications

  • Bachelor’s degree in Machine Learning, Computational Biology, Statistics, Computer Science, Mathematics or a related field, or the equivalent combination of education and related experience.
  • Knowledge and experience developing and applying algorithms in one or more of the following machine learning areas/tasks: deep learning, unsupervised feature learning, zero- or few-shot learning, active learning, transformer-based language modeling, multimodal learning, ensemble methods.
  • Experience developing and implementing deep learning models and algorithms using modern software libraries such as PyTorch, TensorFlow, or similar as evidenced through publications or software releases.
  • Experience in protein structure machine learning and domain knowledge in bioinformatics and protein structure modeling sufficient to communicate effectively with team members.
  • Verbal and written communication skills as reflected in effective presentations and explanations at seminars, meetings and/or teaching lectures.
  • Effective interpersonal skills and initiative necessary to interact with all levels of personnel with the ability to work independently in a collaborative, multidisciplinary team environment.

Additional qualifications at the SES.2 level

  • Comprehensive knowledge and broad experience in developing methods to expand knowledge of interrelated fields of advanced protein design application.
  • Comprehensive knowledge in bioinformatics and protein structure modeling sufficient to communicate effectively with team members.
  • Proficient verbal and written communication skills necessary to effectively collaborate in a team environment and present and explain technical information to a variety of audiences.

Qualifications We Desire

  • Master’s degree in Computational Biology, Computational Bioengineering, Machine Learning, Statistics, Computer Science, Mathematics, or a related field.
  • Strong understanding of protein structure bioinformatics and/or protein structure prediction.
  • Experience with high-performance computing, GPU programming, parallel programming, cloud computing, and/or related methods including running numerical simulations of complex workflow.

Additional Information

#LI-Hybrid

Position Information

This is a Career Indefinite position, open to Lab employees and external candidates.

Why Lawrence Livermore National Laboratory?

Security Clearance

This position requires either no security clearance, or a Department of Energy (DOE) L-level or Q-level clearance depending on the particular assignment.  

If you are selected and a security clearance is required, we will initiate a Federal background investigation to determine if you meet eligibility requirements for access to classified information or matter. Also, all L or Q cleared employees are subject to random drug testing.  L and Q-level clearances require U.S. citizenship.  

If no security clearance is required, but your assignment is longer than 179 days cumulatively within a calendar year, you must go through the Personal Identity Verification process.  This process includes completing an online background investigation form and receiving approval of the background check.  (This process does not apply to foreign nationals.)

 

Pre-Employment Drug Test

External applicant(s) selected for this position must pass a post-offer, pre-employment drug test. This includes testing for use of marijuana as Federal Law applies to us as a Federal Contractor.

Wireless and Medical Devices

Per the Department of Energy (DOE), Lawrence Livermore National Laboratory must meet certain restrictions with the use and/or possession of mobile devices in Limited Areas. Depending on your job duties, you may be required to work in a Limited Area where you are not permitted to have a personal and/or laboratory mobile device in your possession.  This includes, but not limited to cell phones, tablets, fitness devices, wireless headphones, and other Bluetooth/wireless enabled devices.  

If you use a medical device, which pairs with a mobile device, you must still follow the rules concerning the mobile device in individual sections within Limited Areas.  Sensitive Compartmented Information Facilities require separate approval. Hearing aids without wireless capabilities or wireless that has been disabled are allowed in Limited Areas, Secure Space and Transit/Buffer Space within buildings.

How to identify fake job advertisements

Please be aware of recruitment scams where people or entities are misusing the name of Lawrence Livermore National Laboratory (LLNL) to post fake job advertisements. LLNL never extends an offer without a personal interview and will never charge a fee for joining our company. All current job openings are displayed on the Career Page under “Find Your Job” of our website. If you have encountered a job posting or have been approached with a job offer that you suspect may be fraudulent, we strongly recommend you do not respond.

To learn more about recruitment scams: https://www.llnl.gov/sites/www/files/2023-05/LLNL-Job-Fraud-Statement-Updated-4.26.23.pdf

Equal Employment Opportunity

We are an equal opportunity employer that is committed to providing all with a work environment free of discrimination and harassment. All qualified applicants will receive consideration for employment without regard to race, color, religion, marital status, national origin, ancestry, sex, sexual orientation, gender identity, disability, medical condition, pregnancy, protected veteran status, age, citizenship, or any other characteristic protected by applicable laws.

We invite you to review the Equal Employment Opportunity posters which include EEO is the Law and Pay Transparency Nondiscrimination Provision.

Reasonable Accommodation

Our goal is to create an accessible and inclusive experience for all candidates applying and interviewing at the Laboratory.  If you need a reasonable accommodation during the application or the recruiting process, please use our online form to submit a request. 

California Privacy Notice

The California Consumer Privacy Act (CCPA) grants privacy rights to all California residents. The law also entitles job applicants, employees, and non-employee workers to be notified of what personal information LLNL collects and for what purpose. The Employee Privacy Notice can be accessed here.

Videos To Watch

Apply Now  

Refine Search Clear All


Career Areas

Show More

Experience Level


Employment Type


Location


Organization

Show More

Security Clearance