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High-Level Outline

Nonlinear Equations Problems

Newton’'s Method

Small problems

Inexact Newton Methods:
- Newton-Krylov

Tensor Methods

. Inexact Tensor Methods:
" . Tensor-Krylov



Nonlinear Equations Problem

Problem: Findz, such thatF'(x.) = 0, whereF : R" — R".

Notation:
r; = current point
Fr = Flay)
T = Jxy) = Fl(ay)

Areas of Research:
e Problems wherd(x4) is ill-conditioned or singular
e Large-scale problems (e.g., PDE problems)
e Global strategies



Local Tensor Model

Taylor series expansion:

F(x), +d) = F(xy) + F'(x)d + L F"(2;,)dd +O(d”)

\ . 7

~"

Second Order Approximation

Local model: Myp(zy, +d) = Fy+ Jpd+ iTydd

N—— ~——
Newton Tensor

Remarks:
1. T;. € R"*"*" supplies second-order information abéUt:) at ;..
2. Ifusing Ty, = F"(x}.):
e \Would require%n3 second partial derivatives
e System ofn quadratic equations in unknowns
= Not practical!
3. More practicalT), = Y  u®@v®@w



Practical Rank-one Tensor Method

(Schnabel and Frank, 1984)

Store a secant approximationt only in the direction of the previous step.

= 1. =aQs5Q®s

where s = xp._1— 2
2(Fp—1 — Fy — Jgs)
(sT's)?

a =

MT(mk + d) = Fk + Jkd + %CL(STd)Z

Remarks on direct method:
e 2 vectors of extra storage anda).
e Marginally more arithmetic than solving linear system (Newton’s method).
e Reduces to 1 quadratic equation andan- 1) x (n — 1) linear system.



Tensor Method for Solving Nonlinear Equations

(Schnabel and Frank, 1984)

Now insert the local solver into a nonlinear solver framework...

Tensor Method:

Choose an initiaky,

Fork =0,1,2,...,untl termination, Do
1. Form local tensor model.
2. Find d that minimizes| My (zj. + d)||5.
3. Updatezry | «— x; +d.
4. If 21,1 Is not acceptable, then perform linesearch.

e 3-step superlinear convergence on singular problems.
e Modest to significant improvement over Newton’s method on nonsingular and
singular problems(Schnabel and Frank, 1984; Bouaricha, 1992)



Simple Example

Modified Rosenbrock’s function

_ | Ale) = 5z —a7)
R = 4 2 e

Plots will show:
e Contours of| F'(x)|| and|| M (z;. + d)||
e Full Newton and/or tensor step
e Accepted step



Simple Example
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Simple Example

Tensor method
lteration 1




Simple Example

Tensor method
lteration 2




Simple Example

Tensor method
lteration 3




Research Objective

Large-scale tensor methods:

e Develop a Krylov-based iterative method that can solve the local tensor
model in< n steps.

e EXxpand to a fully featured “tensor-Krylov’ method.

e Employ a “curvilinear linesearch” as the global strategy.

e Implement in production code and try solving Navier—Stokes problems.

V)




Newton-Krylov Methods

(Brown and Saad, 1990; Brown and Hindmarsh, 1989; Chan and Jackson, 1986)

e Outer loop = Newton’s method
e Inner loop = Linear Krylov subspace method
— Residualy = —F — Jd
— Kn(J,70) = span{rg, Jro, J°rg, ..., J" g}
— Find an approximate Newton stdpc /C,,, at each iterate.

Newton-GMRES:

Choose an initiak,

Fork =0,1,2, ..., untl termination, Do
1. Find stepd € ICyy, that minimizes| Fj. + Jp.d||5.
2. Updatery | < xp + d.
3. If x;,1 Is not acceptable, then perform linesearch.

—> Now extend to densor-Krylovmethod.



The Tensor-Krylov Method

Tensor-Krylov Method:

Choose an initiak,
Fork =0,1,2, ..., until termination, Do
1. Form local tensor model.
2. Findd € Ky, that minimizes| My (zy. + d)||».
3. Updater;., | <« x +d.
4. If x5, Is not acceptable, then perforfrurvilinear)linesearch.

=- Three methods for solving step 2...
= Introduce curvilinear linesearch...




Krylov-based Method for
Solving Local Tensor Model

Find the stepl that minimizes the tensor model

min F+Jd+lasTd2||
delCmH & k 2< ) 2

where/C,,, is a specially chosen Krylov subspace.

\UJ

Start with the block Krylov subspadé&, = span{s, a, F}.}.

Use Arnoldi process to build an dimensional orthogonal subspace and banded

Hessenberg.

Perform series gblane rotationto reduce Hessenberg system to:
— Triangular system ofn — 1 linear equations im» unknowns.
— Four quadratic equations inunknown.

Solve for single unknown and then solve resultant linear system.

Call this method;

TK3




Two More Krylov-based Methods

Local model: My(xy, + d) = Fj, + Jid + sa(s! d)?

e Looks like a linear system involving a linear combination of 2 right-hand sides:
Jpd = —Fj, — a3’ whereg = s'd

e Vectors not in right-hand side sepan{s, Js, J%s, ...} does little to help
convergence.

e Start with the block Krylov subspadé, = span{a, F}.}.

e Build ), = span{a, F}., Ja, JF}., J2a, JQF;C7 ot

e Solve the tensor model

min HFk + Jd + %a(STd)QH TK2
delnm 2
min HFk v Jd+ %a(sTd)QH TK2+
de{s}UlC, 2




Similarities Among the Methods

e May control quality of inexact tensor step to within a specified tolerance, in
contrast to other large-scale tensor methods.
e Formulations can handle:
— Restarting
— Left/right preconditioning
— Most technology developed for GMRES



Differences Among the Methods

TK3 TK2 & TK2+
e Simpler to program e Typically fewer
e Larger block for better Jacobian-vector products
memory performance? needed to converge

e Each may be formulated as a block or scalar method.

JV versusjv

e Block implementation more efficient in terms of memory performance.
(Fewer accesses to Jacobian)
e Scalar implementation more straightforward.



Tensor-GMRES Method of Feng and Pulliam

(Feng and Pulliam, 1997)

1. Find Newton-GMRES step
2. Savek (i.e.,V,, andH,y,)
3. Solve theprojectectensor model

min “Fk+ Jd—i—%Pa(sTd)QH
dE{dQ}U/C%

whereP is the projection matrix

2

P=yY'Y) 'y, Y = J.[Vin, dy

Notes:
e Retains 3-step superlinear convergence properties (for ideal tensor method)
e How much will P andlC% affect the quality of the step?
(e.g., preconditioning and restarting)



Method Comparison

Cost per Local Solve

Newton-GMRES O(nm?)

Tensor-Krylov (TK3) GMRES+ 10n + 4nm + 6m?
Tensor-Krylov (TK2) GMRES+ 4n + 3nm + 6m? + 1(JV)
Tensor-Krylov (TK2+) GMRES+ "n + 4nm + 1777722 + 1(Jv)

Tensor-GMRES (Feng-Pulliam) GMRES5n + 4nm + 2m? + 1(Jv)

Strength Weakness
Newton-GMRES General use Singular/ill-cond. problems
Tensor-Krylov (all) SolvesMry(x; +d) Block-Krylov style

Tensor-GMRES (Feng-Pulliam) GMRES frontend  Projectédx; + d) on K



Graphical Comparison of Methods

Information in
locd modd A
o TK2/2+

(aff eds number of * Tensor-GMRES
nonli nea iterations)

* Newtor-GMRES

\ \ —
1 2 3
Block sizeof locd method
(aff eds number of Arnoldi iterations)

Tensor-Krylov methods: Trade more inner iterations for fewer outer iterations.



New ldea: Curvilinear Linesearch as Global Strategy

1.2

0.8

> 0.6

04r

0.2r

M)\T(a;‘k + d) = >‘Fk + Jkd + %a(sTd)z

4

Curvilinear stepi7(\)

Contours of| Mp(xj. + d)]|2

1.2

General properties:
o ||Mp(z) + dp(N))|5 increases
monotonically fromh\ =1 — 0
e Asymptotically approachesy
e Resembles trust region method



Large-scale Problems

e Need a large-scale implementation of Tensor-KrngewWOX
e Need several benchmark PDE problems for testinylPSalsa
e Test 3 fluid flow problems



NOX: A C++ Objected-Oriented
Nonlinear Equation Solver Package

Sandia _
@ lNaal;[g)rg?(IJries

e Object-oriented C++ code using abstract and concrete
classes for the construction and solution of nonlinear
problems.

e Abstraction isolates the solver layer from...

— Vector and matrix representation
— Linear solver and/or preconditioners
— Application interface £'(z), J(x))

e Nonlinear solvers and global strategies are written in &
modular fashion to accommodate the user’s linear
solver package and parallel configuration.

¢ Includes several state-of-the-art solvers and is easily
extensible for new solvers.

Solver layer

Linear algebra

Application
Interface



MPSalsa: 2D and 3D
Parallel Reacting Flow Code

Sandia
National
Laboratories

Galerkin/Least-Squares Finite Element formulation on unstructured grids
Creates fully coupled system of equations (fluid flow, heat transfer, and
multi-component mass transfer with finite rate chemical reactions)
Solves laminar and turbulent, low Mach number, reacting flows
Slate of robust algorithms (not used in this comparison)
Used to create test problems:

— Backward-facing step

— Lid driven cavity

— Thermal convection
Reference for test cases]). N. Shadid, R. S. Tuminaro, H. F. Walker, “An Inexact
Newton Method for Fully Coupled Solution of the Navier-Stokes Equations with
Heat and Mass Transportl’ Computational Physics, 137, 155—-185 (1997).




Numerical Tests

Stopping conditions:
— Function reduction: ||F(z)|| < 1072 ||F(zo)|
— Weighted step length: ﬁ |Wd|| < 1
where: d;. = full Newton or tensor step
W = diagonal scaling matrix with entries

1

Wi = 1073 2, + 1078

Initial starting vectorry = 0

Constant forcing term;. = 10~% in local solves

Right Preconditioning using an ILUT preconditionier
Max 250 Arnoldi iterations and no restafts

Enabled maximum accuracy in Jacobtan

No function or variable scaling

* Note: Conditions different from (Shadid et al., 1997) so results here will differ.



Backward-facing Step Problem

No Slip Boundary
Inlet = —= —
(velocity — 3 —
profile) — = ~ Qutlet
== ' - (Neumann BC)

—»

No Slip Boundary

e Incompressible, steady-state flow:
continuity and momentum (2D)
equations

e Difficulty/nonlinearity controlled via
the Reynolds number (Re)

e 20 x 400 mesh— 24,000 unknowns

V-u = 0
Reu - Vu+VP —Viu = 0



Backward-facing Step Results

Arnoldi Itns
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Thermal Convection Problem

Insulated wall

Buoyancy
driven
flow

Cold
wall

(color indicates
fluid speed)

Insulated wall

e Incompressible, steady-state flow:
continuity, momentum (2D), and
, Veou =0 energy equations
Reu-Vu+VP—-Vu+RaT = 0 e Difficulty/nonlinearity controlled via

1
Reu - Vu+ VT + ﬁrvQT = 0 the Rayleigh number (Ra)
e 100 x 100 mesh— 40,000 unknowns



Thermal Convection Problem Results

200

Thermal Convection Problem )
- — & <« Fallures: NG, TG, TK3

150

100

-O- NG
TG
== TK2

—f— TK2+
TK3

Nonlinear Itns

50

«— Curvilinear linesearch:
TK2, TK3

Arnoldi Itns

Rayleigh Number



Lid Driven Cavity Problem

Moving Lid

N\ “\":\ 5
7 \\_ \\‘ N
\\'.\__‘ }"5/
D 70

No Slip Boundaries

e Incompressible, steady-state flow:
continuity and momentum (2D)

equations
V-u = 0 o _ _ .
2, — 0 ¢ Difficulty/nonlinearity controlled via
Rew Vut VIE=Viu = the Reynolds number (Re)

e 100 x 100 mesh— 30,000 unknowns



Lid Driven Cavity Results

Lid Driven Cavity Problem )
200 . g «— Falilures: TG, TK2

» 150 F

j=

© 100}

£

5 .

Z 50t NG: linesearch failure
e —— at Re=1500 but could
go’o 1000 1500 solve Re=2000

Arnoldi Itns

500 1000 1500
Reynolds Number



Summary

Derived three Krylov-based methods for iteratively solvivig(z;. + d).
Developed a “curvilinear linesearch,” which resembles a trust region method an
adds greater flexibility in search direction.
Implemented the tensor-Krylov methods in NOX for solving large-scale problem
Results so far have shown the following:
— Tensor methods are beneficial on ill-conditioned and singular problems.
— Tensor-Krylov methods tend to Imeore robusthan Newton-GMRES (when
using constant forcing term).
— Tensor-Krylov methods can beore efficienthan Newton-GMRES,
particularly on harder problems.
— Tensor-GMRES is a competitive algorithm.

Thus, tensor-Krylov methods are useful of
difficult problems that Newton-GMRES
might have trouble with.

—




Future Research

Several unique directions to pursue:
e Use block implementation in tensor-Krylov methods for better memory efficienc
(i.e., fewer accesses to Jacobian).
e Adapt method so it can use stand-alone linear algebra packages.
e Add an adjustable forcing term for greater robustness.



Contact Information

e Questions?
e Comments?
e More info?

Brett.Bader@Colorado.edu
http://www.cs.colorado.edu/users/bader



