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High energy density implies large Energy/Volume. The

physics under these conditions is rich with subtleties.
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« HED corresponds to E/V > 1& ergs/cn$ (P > 1 Mbar) Science 252, 384 (1991)
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HED facilities generate large E/V over short durations.

Examples are large lasers and magnetic pinch facilitie$.

Omega laser, 60 arms, 30 kJ,
Univ. of Rochester —.«as i 1/3pum, 1-10 ns,
g RS e .. ~mm scl targets

(E/V ~ 104 erg/cne)

The National Ignition Facility, LLNL,
(under construction)

192 arms, 2 MJ, ;
1/3um, 1-100 ns,
mm - cm scl targets

20 MA, 1 MJ of x-rays, (E/V ~ 103 - 106 erg/cn®) |==ii

10-100 ns, ~cm scl targets
(E/V ~ 102 erg/cne)

» See Keith Matzen talk, K7.001, Sun. afternoon in the HEDPP session
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High energy density facilities are a key ingredient

towards achieving precision astrophysics

» The extreme conditions found in astrophysics can be reproduced in the laboratory

only on HED facilities

 Astrophysics simulation_codes can be tested under relevant conditions

» Physics models and concepts can be tested under relevant conditions

« Fundamental quantities (opacities, EOS) can be measured under relevant conditions

» Aspects of scaled dynamics can be reproduced under relevant conditions

» Achieving precision astrophysics requires such HED facilities

* A selection of examples will be shown, drawn from:
- planetary interiors
- Cepheid variable stars
- supernovae
- accreting neutron stars and black holes
- gamma-ray bursts
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Regimes:
- degenerate plasmas

- rad-hydro
- rad-hydro
- radiation-dominated
- relativistic



Planetary interiors

e Can we understand planetary interiors and planetary
formation mechanisms, ie, planetary birth?

 Regime: degenerate plasmas
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Models for planetary interiors require an accurate
understanding of the EOS of dense plasma

Jupiter
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HED experiments replicate the extreme pressures

of the interior of Jupiter in recent EOS msmts
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» Experiments in the most critical
0.5 - 10 Mbar regime are possible
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These recent measurements of the,[EOS have generated

enormous interest in the astrophysics community

Guillot et al., to appear in “The Interior of Jupiter” book

- / Nova data
1.2 Z data v.-::;‘,-*"’ PPT EOS Al Guillot et al., Icarus 130, 534 (1997)
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» Different planetary models are being
compared to the HED data
» The implications of these models on the interior 0 | |
of Jupiter are significant (ie, a core or not) 0o e 26’ 4'0“‘ o
* Different planetary formation models are discriminated M zi0t/Mg

by the existence of a central core in Jupiter
April_APS_02_2.ppt



What have we learned?

» Hydrogen EOS is much more difficult than we thought!

« Only additional HED experiments will resolve which planetary
Interior model is correct

« Results will affect planetary formation models

» See Bob Cauble talk, K7.005, Sun. afternoon
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Cepheld variables

« Can we understand Cepheid variable stars as standard
candles, ie, a calibrated “yardstick of the universe”?

 Regime: coupled radiation hydrodynamics
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Cepheid variables are stars whose luminosities

pulsate with periods of a few days to a few weeks

Galaxy M100 A Cepheid variable in M100, observed with HST WFPC2

Apiil 23

M100

HST-WFPC2

&

Distance = 56 x 19Igt yr _Ia _
J. Trauger, JPL and NASAJ. Trauger, JPL and NASA 3 Cephelds:
L] LOP
102
| 1 | L |
 Period ~ Size, Luminosity ~ size, hence Luminosity ~ Period 1 10 100
 Since LU P, Cepheids serve as standard candles Period (days)

e Since LO R?, Cepheids are the most reliable distance indicator
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Why do Cepheid variables pulsate, and why are

the periods of pulsation sensitive to opacity?

Amplitude

Log Kg (cm?/Q)
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« Modeling of Cepheid oscillations requires accurate opacities



What have we learned?

» Correct microphysics (accurate opacities) is needed to
reproduce observed macrophysics (stellar pulsation periods)

» Opacities of high-Z elements (eq., Fe) are very complex

* Direct measurements under relevant conditions can be made

» See Paul Springer talk, K7.003, Sun. afternoon
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Supernovae

e Can we understand supernova explosion and
remnant dynamics, ie, stellar death?

 Regime: coupled radiation hydrodynamics
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A core-collapse supernova occurs when

the Fe core of a massive star collapses
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* Light curve of SN1987A was broad, with an early rise Time (days)
« y-rays from 56Co were observed 2x sooner than expected
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HED experiments reproduce aspects of

scaled SN explosion hydrodynamics
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K.S. Budil, private communication (2002) Drake et al., Ap. J. 564, 896 (2002)

A scale transformation of the Euler equations relates the lab experiment to the SN
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Simulations of supernova explosions show extensive

material interpenetration, do not appear to be turbulent
3D HED experiments may be

| "] =

Van Dyke (1982) Kifonidis, Ap. J. 531, L123 (2000)
Experimental image of a SN simulation at Rg,,~10:
turbulent flow at Re = 10 unstable but non-turbulent,
April_APS_02_4.ppt VS. R%N ~1GO fUIIy tUFbUlent

Robey (2002



What have we learned?

» Actual SNe are high Reynolds number flows, so should be fully turbulent

« Simulations of core-collapse SNe do not transition to turbulence,
whereas actual SNe must be fully turbulent

« Scaled SN experiments can bridge this gap and illustrate the
Impact of the transition to turbulence

» See Paul Drake talk, K7.003, Sun. afternoon
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Accreting black holes
and neutron stars

e Can we understand neutron star, black hole
accretion dynamics, ie, stellar post-mortem

 Regime: radiation-dominated plasma
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Accreting neutron stars and black holes offer spectral

signatures of the dynamics as matter spirals inward

Pineret al, A.J. 122, 2954 (2001)
AGN: NGC 4261

« 88,000 LY> Ferrareset al, Ap. J. 470, 444 (1996)
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HED experiments reproduce the conditions of

radiation-dominated photoionized plasmas
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What have we learned?

» Current astrophysics photoionized plasma models differ by factors of 2 in <Z>
 Laboratory data is critical for calibrating these models

« Experiments under relevant conditions have been demonstrated

» See Paul Springer talk, K7.003, Sun. afternoon
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Gamma-ray bursts

e Can we understand gamma-ray burst explosion
mechanisms and dynamics, ie, what are they?

 Regime: relativistic plasmas
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Gamma-ray bursts currently are the

greatest enigma in modern astrophysics

r Fishman & Megan, ARA/B3, 415 (1995) T

Time (sec)

Simul’'d accretion disk - black hole density structure

Woosley & MacFadyen,

Seriesl38, 499 (1999)
Ivli > 3C)Msun
Inner disk:
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HED experiments on ultra-intense lasers access the

relativistic plasma regime, relevant to aspects of GRBs

Are there similarities?

Woosley & MacFadyen,
Astron. Astrophys. Suppl.
Seriesl38, 499 (1999)

10°°W/icm? Electron
for 10 ps cloud

Wilks et al., Phys. Plasmas 8, 542 (2001)
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* A measurable population of ée pairs is predicted for double-sided illumination
April_APS_02_6.ppt



Experiments on ultra-intense lasers in the relativistic

plasma regime have observed new physics phenomed &

C. Toupin et al., IFSA 99 Publ. Elsevier, p. 471 (2000)

2 10000
=
r 1000
o 100
o
S 10
[ 1
5
Z 01

Protons

T~<Ep>~4

10?0 W/cm?

Snavely et al.,
PRL 85, 2945 (2001)

10 20 30 40 50 60
Proton energy (MeV)

Petawatt laser

MeV

» See Warren Mori talk K7.004 Sun. afternoon
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What have we learned?

 Relativistic plasmas can be accessed experimentally
* New, unexpected physics phenomena were observed
« Dynamics of an ée (micro) fireball may be experimentally accessible

» These relativistic plasmas may have relevance to aspects of GRBs

* See Warren Mori talk, K7.004, Sun. afternoon
» See Jay Salomonson poster, N17.057, Mon. morning
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The future



The future:

HED facilities for the next decade include the ~2 MJ NIF and LMJ lasers,

the upgraded Z-R pinch facility, and several petawatt lasers

NIF constructlon S|te | LMJ design

» See Keith Matzen talk, K7.001, Sun. afternoon e BT e
Also UK France Germany, US
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New facilities and new capabilities make the coming decade

particularly exciting for the field of HEDP

Facilities to look forward to:

« 2-MJ NIF in U.S. + Petawatt(s?)

e 2-MJ LMJ in France

* 60-beam Omega + Petawatt

» 12-beam Gekko + Petawattt (Japan)

« 5-kJ/10-beam Vulcan + 2 x Petawatt (U.K.) New capabilities these will provide:

e LULI Petawatt (France) —p * first laboratory demonstration of thermonuclear ignition
« GS| Petawatt (Germany) « intense bursts of neutrons may access r-, s-, p-processes
« Z-R pinch facility + Petawatt * possible ignition physics studies of relevance to SNe-1a
* 60-kJ/60-beam SG-III (China) e fully turbulent, hydrodynamic tests for SNe

 scaled SNe V&YV testbed

« EOS at very high pressures: white dwarfs, brown dwarfs
« expansion opacity, rad-flow msmts relevant to SNe

* photoionized plasmas relevant to accretion disks, AGN
* radiative shocks relevant to SNR

 access aspects of neutron star atmospheres at ~1 keV
* relativistic plasma testbed, possible relevance to GRB
 concept for accessing Unruh radiation physics

» Gigagauss magnetic fields (n-star atmos.)

 implode rotating core

* core-kick asymmetic implosions

* solid-state properties at Jupiter core pressures

« definitive test of plasma phase transition
April_APS_02_7.ppt



