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The ASCI fluid turbulence team
studies turbulence processes in
strongly-compressible three-
dimensional hydrodynamic flows
and develops subgrid-scale
parameterizations of turbulence
effects for large-eddy numerical
simulations.

tions, the relevant length scales

range over several orders of magni-
tude, so that finite-difference direct
numerical simulations (DNS) are com-
putationally not feasible for the driving
parameters of interest. To simulate the
dynamically important range of scales,
we will perform large-eddy simulations
(LES) instead. Using LES, the dynami-
cal effects of the unresolved scales are
modeled by a subgrid-scale parameteri-
zation, and the resolved scales are
calculated explicitly. These parameteri-
zations allow the use of fewer grid
points than would be necessary for a
DNS. A major thrust of the ASCI appli-
cations programs is a shift from
two-dimensional to three-dimensional
physics computations. Turbulence in
two and three dimensions is pro-
foundly different, and the subgrid scale
parameterizations developed for 2-D
flow are generally insufficient for mod-
eling 3-D flow. Thus, a principal
research topic in this project is to
develop subgrid-scale parameteriza-
tions from 3-D hydrodynamic theory
and experiments and to validate them
against fully resolved DNS and avail-
able experimental data.

In many hydrodynamics applica-
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Figure 1. Mixing of the heavier fluid, which is initially on top, with the fluid on the bottom is known
as the Rayleigh-Taylor instability.

Numerical Approach and
Programming Model

We are using several numerical
simulation codes, predominately one
based on the piecewise parabolic
method (PPM), which is a higher-order
accurate Godunov method developed
by Colella and Woodward. The
Godunov approach is typical of
standard numerical techniques in
regions where the solution is smooth.
However, in regions with discon-
tinuities, such as strong shocks, the
Godunov method approximates the
solution well by analytically solving an
associated Riemann problem. This is an
idealized problem describing the
evolution of a simple jump into shocks
and/or rarefactions, with a contact
discontinuity in between. Mono-
tonicity constraints ensure that these
discontinuities remain sharp and
accurate as they traverse the
computational grid. The higher-order
spatial interpolation in the PPM allows
steeper representation of
discontinuities, thus allowing a more
accurate solution to a wider class of
problems. For some of our simulations,
molecular dissipation processes are
explicitly modeled, in which case the
simulations are of the Navier-Stokes
equations rather than the Euler

equations. Parallelization across
computational nodes is implemented
by domain decomposition with
message-passing. The subdomains are
three-dimensional and contain extra
border cells to allow intermediate
computation, thereby reducing the
required interprocessor communica-
tion. Variables are ordered in memory
to effect optimal usage of cache. To
date, we have run calculations on the
IBM-SP, the INTEL Tflops machine, the
DEC Alpha machine, and the T3D.

Rayleigh-Taylor Instability

As an example of our research, we
use the PPM code to simulate the
Rayleigh-Taylor instability and turbu-
lent mixing on a unit cube spanned by
a grid containing 512 points in each of
the three directions. This case was run
on the ASCI Blue Pacific ID System
using 128 nodes. The initial equilib-
rium state consists of a y=5/3 gas, in
which the subvolumes above and
below the midplane are stably strati-
fied equilibria. The internal energies
are piecewise constant, while the den-
sity and pressure decrease
exponentially with height, but have
different scale heights above and below
the midplane. The density jumps by a
factor of 2 from below to above the
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Figure 2. The spectra of vertical velocity at the
midplane with respect to horizontal wave num-
ber, as a function of grid resolution, for the
Rayleigh-Taylor problem.

midplane, corresponding to an
Atwood number of 1/3, while the
pressure is continuous. The sound
speed corresponding to the equilib-
rium state below the midplane is 1.0.
The simulation includes molecular dis-
sipation with a Prandtl number of 1.0.
The boundaries are periodic in the hor-
izontal directions and impenetrable in
the vertical direction. A random spec-
trum of low-level velocity
perturbations away from the equilib-
rium state is initially imposed. After
the initial linear mixing phase, bubbles
(rising from below) and spikes (falling
from above) begin to form. Afterward,
the horizontal fluctuation scales grow
in size and the physical system evolves
toward a stably stratified equilibrium.
Figure 1 shows the temperature field at
time t = 4.0. Figure 2 shows the spectra
of vertical velocity (in terms of squared
amplitude per mode) at the midplane
as a function of horizontal wave num-
ber for various grid resolutions. The
512 x 512 x 512 case appears to be con-
verged (with respect to grid
resolution), with the middle portion of
the curve representing a possible iner-
tial range.

Richtmyer-Meshkov Instability

A second example of our work
involves simulating the Richtmyer-
Meshkov instability, which is the
impulsive-acceleration limit of the
Rayleigh-Taylor instability. This insta-
bility occurs, for example, when a
shock passes through an interface of
two fluids of differing density. We con-
sider an elongated domain having
dimensions 0.5 X 0.5 x 1.37, spanned by
a 192 x 192 x 448 mesh. A gas having a
2-fold density contrast across a single-
mode perturbed planar interface
impinges on a higher-density, higher-
pressure gas to initiate a highly
supersonic (Mach 6) shock on the low-
density side of the contact
discontinuity. We advect a passive
scalar field that measures the degree of
mixing of the low- and high-density
fluids. Figure 3(a) shows the passive
scalar in the aftermath of the interac-
tion of the shock with the contact
discontinuity. The development of fine-
scale, non-chaotic features is evident.
Figures 3(b) and 3(c) depict the result
of passing an additional Mach 6 shock
through the interface from the same
and opposite sides, respectively. There
is a distinct change in character, as
much of the fine-scale structure is
smeared out. Figure 4 shows the width
of the mixing layer (measured by the
departure of the passive scalar from its
initial values) as a function of time. For
the second shock phase (rightmost
curve), the diamonds indicate the case
where the second shock is in the same
direction as the first, and the crosses
indicate the case where the second
shock is coming from the opposite side.
The solid curves represent logarithmic
fits, and the dashed curves are power
law fits. The forward and reverse shock
cases differ by only a slight delay.
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Figure 4. The width of the mixing layer as a func-
tion of time, for the Richtmyer-Meshkov instability.

Evaluation of High-Performance
Computing Platforms

This project has an important sec-
ondary goal, that of exploring the
limits of ASCI high-performance
computing platforms for three-
dimensional hydrodynamics applica-
tions. This would include scalable,
distributed memory massively parallel
processors as well as shared memory
processor clusters. Our high demands
on data storage, visualization, and
archival storage will test the robustness
of the problem-solving environment as
well.
We are collaborating with Paul Woodward
and David Porter of the University of Min-
nesota, with Andrzej Domaradzki of the
University of Southern California, and
with Steven Orszag of Cambridge Hydro-
dynamics, Inc.
For more information about ASCI
fluid turbulence, contact:
William P. Dannevik, (925) 422-3132,
dannevik1@IInl.gov;
Ronald H. Cohen, (925) 422-9831,
rcohen@IInl.gov; or
Arthur A. Mirin, (925) 422-4020,
mirin@IInl.gov.

Figure 3. A passive scalar used to indicate the degree of mixing, for the Richtmyer-Meshkov problem. Blue indicates low density, and red high density.
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