
UCRL-MA-118751 Rev. 1

Silo User’s Guide

Revision: March 2002
Version: 4.3

Law
ren

ce

Live
rm

or
e

Nati
on

al

Lab
or

ato
ry

ii

DISCLAIMER

Thisdocumentwaspreparedasanaccountof work sponsoredby anagency of theUnitedStatesGovernment.Neither
the United StatesGovernmentnor the University of California nor any of their employees,makes any warranty,
expressor implied, or assumesany legal liability or responsibilityfor the accuracy, completeness,or usefulnessof
any information, apparatus,product,or processdisclosed,or representsthat its usewould not infringe privately
ownedrights. Referencehereinto any specificcommercialproduct,process,or serviceby tradename,trademark,
manufacturer, or otherwise,doesnotnecessarilyconstituteor imply its endorsement,recommendation,or favoringby
theUnitedStatesGovernmentor theUniversityof California.Theviewsandopinionsof authorsexpressedhereindo
notnecessarilystateor reflectthoseof theUnitedStatesGovernmentor theUniversityof California,andshallnotbe
used for advertising or product endorsement purposes.

Work performedundertheauspicesof theU.S.Departmentof Energy by LawrenceLivermoreNationalLaboratory
under Contract W-7405-ENG-48.

iii Silo Interface Function Quick Reference

C Functions
int DBAddDblComponent(Object *object, char

*compname, double d);
int DBAddFltComponent(Object *object,

char *compname, double f);
int DBAddIntComponent(Object *object,

char *compname, int i);
int DBAddOption(DBoptlist *optlist,

int option, void *value);
int DBAddStrComponent(Object *object,

char *compname, char *s);
int DBAddVarComponent(DBObject *object,

char *compname, char *vardata);
DBcompoundarray *DBAllocCompoundarray(void);
DBedgelist *DBAllocEdgelist(void);
DBfacelist *DBAllocFacelist(void);
DBmaterial *DBAllocMaterial(void);
DBmatspecies *DBAllocMatspecies(void);
DBmeshvar *DBAllocMeshvar(void);
DBmultimesh *DBAllocMultimesh(void);
DBmultivar *DBAllocMultivar(void);
DBpointmesh *DBAllocPointmesh(void);
DBquadmesh *DBAllocQuadmesh(void);
DBquadvar *DBAllocQuadvar(void);
DBucdmesh *DBAllocUcdmesh(void);
DBucdvar *DBAllocUcdvar(void);
DBzonelist *DBAllocZonelist(void);
DBfacelist *DBCalcExternalFacelist(

int nodelist[], int nnodes,
int origin, int shapesize[],
int shapecnt[], int nshapes,
int matlist[], int bnd_method);

DBfacelist *DBCalcExternalFacelist2(
int nodelist[], int nnodes,
int lo_offset, int hi_offset,
int origin, int shapetype[],
int shapesize[], int shapecnt[],
int nshapes, int matlist[],
int bnd_method);

int DBClearObject(DBobject *object);
int DBClearOptlist(DBoptlist *optlist);
int DBClose(DBfile *dbfile);
int DBContinue(DBfile *dbfile);
DBfile *DBCreate(char *pathname, int mode,

int target, char *fileinfo, int filetype);
char *DBErrFunc(void);
int DBErrno(void);
char *DBErrString(void);
void *DBFortranAccessPointer(int value);
int DBFortranAllocPointer(void *);
void DBFortranRemovePointer(int);
int DBFreeCompoundarray(DBcompoundarray *x);
int DBFreeEdgelist(DBedgelist *x);
int DBFreeFacelist(DBfacelist *x);
int DBFreeMaterial(DBmaterial *x);
int DBFreeMatspecies(DBmatspecies *x);
int DBFreeMeshvar(DBmeshvar *x);
int DBFreeMultimesh(DBmultimesh *x);
int DBFreeMultivar(DBmultivar *x);

int DBFreeObject(DBobject *x);
int DBFreeOptlist(DBoptlist *optlist);
int DBFreePointmesh(DBpointmesh *x);
int DBFreeQuadmesh(DBquadmesh *x);
int DBFreeQuadvar(DBquadvar *x);
int DBFreeUcdmesh(DBucdmesh *x);
int DBFreeUcdvar(DBucdvar *x);
int DBFreeZonelist(DBzonelist *x);
void *DBGetAtt(DBfile *dbfile, char *varname,

char *attname);
void *DBGetComponent(DBfile *dbfile,

char *objname, char *compname);
int DBGetComponentType(DBfile *dbfile, char

*objname, char *compname);
DBcompoundarray *DBGetCompoundarray(

DBfile *dbfile, char *arrayname);
DBcurve *DBGetCurve(DBfile *dbfile,

char *curvename);
long DBGetDataReadMask(void);
int DBGetDir(DBfile *dbfile, char *dirname);
DBmaterial *DBGetMaterial(DBfile *dbfile,

char *mat_name);
DBmatspecies *DBGetMatspecies(DBfile *dbfile,

char *ms_name);
DBmultimat *DBGetMultimat(DBfile *dbfile,

char *name);
DBmultimesh *DBGetMultimesh(DBfile *dbfile,

char *meshname);
DBmultivar *DBGetMultivar(DBfile *dbfile,

char *varname);
DBmultimatspecies *DBGetMultimatspecies(

DBfile *dbfile, char *name);
DBPointmesh *DBGetPointmesh(DBfile *dbfile,

char *meshname);
DBmeshvar *DBGetPointvar(DBfile *dbfile,

char *varname);
DBquadmesh *DBGetQuadmesh(DBfile *dbfile,

char *meshname);
DBquadvar *DBGetQuadvar(DBfile *dbfile,

char *varname);
DBtoc *DBGetToc(DBfile *dbfile);
DBucdmesh *DBGetUcdmesh(DBfile *dbfile,

char *meshname);
DBucdvar *DBGetUcdvar(DBfile *dbfile,

char *varname);
void *DBGetVar(DBfile *dbfile, char *varname);
int DBGetVarByteLength(DBfile *dbfile,

char *varname);
int DBGetVarLength(DBfile *dbfile,

char *varname);
int DBGetVarType(DBfile *dbfile,

char *varname);
int DBInqCompoundarray(DBfile *dbfile, char*

name, char *elemnames[], int *elemlengths,
int nelems, int nvalues, int datatype);

int DBInqFile(char *filename);
int DBInqMeshname(DBfile *dbfile,

char *varname, char *meshname);
int DBInqMeshtype(DBfile *dbfile,

char *meshname);

int DBInqVarExists(DBfile *dbfile,
char *name);

DBObjectType DBInqVarType(DBfile *dbfile,
char *name);

DBobject *DBMakeObject(char *objname,
int objtype, int maxcomps);

DBoptlist *DBMakeOptlist(int maxopts);
int DBMkDir(DBfile *dbfile, char *dirname);
DBfile *DBOpen(char *name, int type,

int mode);
int DBPause(DBfile *dbfile);
int DBPutCompoundarray(DBfile *dbfile,

char *name, char *elemnames[],
int *elemlengths, int nelems,
void *values, int nvalues, int datatype,
DBoptlist *optlist);

int DBPutCurve(DBfile *dbfile,
char *curvename, void *xvals,
void *yvals, int datatype, int npoints,
DBoptlist *optlist);

int DBPutFacelist(DBfile *dbfile, char *name,
int nfaces, int ndims, int nodelist[],
int lnodelist, int origin, int zoneno[],
int shapesize[], int shapecnt[],
int nshapes, int types[], int typelist[],
int ntypes);

int DBPutMaterial(DBfile *dbfile, char *name,
char *meshname, int nmat, int matnos[],
int matlist[], int dims[], int ndims,
int mix_next[],int mix_mat[],
int mix_zone[], float mix_vf[],
int mixlen, int datatype,
DBoptlist *optlist);

int DBPutMatspecies(DBfile *dbfile,
char *name, char *matname,
int nspecies_mf, float species_mf[],
int nmatspec[], int nmat, int datatype,
int speclist[], int dims[], int ndims,
int mix_list[], int mixlen,
DBoptlist *optlist);

int DBPutMultimat(DBfile *dbfile, char *name,
int nmat, char *matnames[],
DBoptlist *optlist);

int DBPutMultimatspecies(DBfile *dbfile,
char *name, int nspec, char *specnames[],
DBoptlist *optlist);

int DBPutMultimesh(DBfile *dbfile, char *name,
int nmesh, char *meshnames[],
int meshtypes[], DBoptlist *optlist);

int DBPutMultivar(DBfile *dbfile, char *name,
int nvar, char *varnames[],
int vartypes[], DBoptlist *optlist);

int DBPutPointmesh(DBfile *dbfile, char *name,
int ndims, float *coords[], int nels,
int datatype, DBoptlist *optlist)

int DBPutPointvar(DBfile *dbfile, char *name,
char *meshname, int nvars, float *vars[],
int nels, int datatype,
DBoptlist *optlist);

iv Silo Interface Function Quick Reference

int DBPutPointvar1(DBfile *dbfile, char *name,
char *meshname, float var[], int nels,
int datatype, DBoptlist *optlist);

int DBPutQuadmesh(DBfile *dbfile, char *name,
char *coordnames[], float *coords[],
int dims[], int ndims, int datatype,
int coordtype, DBoptlist *optlist)

int DBPutQuadvar(DBfile *dbfile, char *name,
char *meshname,int nvars,
char *varnames[], float *vars[],
int dims[], int ndims, float *mixvars[],
int mixlen, int datatype, int centering,
DBoptlist *optlist)

int DBPutQuadvar1(DBfile *dbfile, char *name,
char *meshname, float *var, int dims[],
int ndims, float *mixvar, int mixlen,
int datatype, int centering,
DBoptlist *optlist)

int DBPutUcdmesh(DBfile *dbfile, char *name,
int ndims, char *coordnames[],
float *coords[], int nnodes, int nzones,
char *zonel_name, char *facel_name,
int datatype, DBoptlist *optlist)

int DBPutUcdvar(DBfile *dbfile, char *name,
char *meshname, int nvars,
char *varnames[], float *vars[], int nels,
float *mixvars[], int mixlen,
int datatype, int centering,
DBoptlist *optlist)

int DBPutUcdvar1(DBfile *dbfile, char *name,
char *meshname, float *var, int nels,
float *mixvar, int mixlen, int datatype,
int centering, DBoptlist *optlist);

int DBPutZonelist(DBfile *dbfile,
char *name, int nzones, int ndims,
int nodelist[], int lnodelist, int origin,
int shapesize[], int shapecnt[],
int nshapes);

int DBPutZonelist2(DBfile *dbfile,
char *name, int nzones, int ndims,
int nodelist[], int lnodelist, int origin,
int lo_offset, int hi_offset,
int shapetype[], int shapesize[],
int shapecnt[], int nshapes);

int DBReadAtt(DBfile *dbfile, char *varname,
char *attname, void *results);

int DBReadVar(DBfile *dbfile, char *varname,
void *result);

int DBReadVar1(DBfile *dbfile, char *varname,
int offset, void *result);

int DBReadVarSlice(DBfile *dbfile,
char *varname, int *offset, int *length,
int *stride, int ndims, void *result);

long DBGetDataReadMask(long mask);
int DBSetDir(DBfile *dbfile, char *pathname);
void DBShowErrors(int level,

void(*func)(char*));
char *DBVersion(void);

int DBWrite(DBfile *dbfile, char *varname,
void *var, int *dims, int ndims,
int datatype);

int DBWriteComponent(DBfile *dbfile, DBobject
*object, char *compname, char *prefix,
char *datatype, void *var, int nd,
long *count);

int DBWriteObject(DBfile *dbfile,
DBobject *object);

int DBWriteSlice(DBfile *dbfile,char *varname,
void *var, int datatype, int *offset, int
*len, int *stride, int *dims, int ndims);

Fortran Functions
integer function dbaddcopt(optlist_id, option,

cvalue, lcvalue)
integer function dbadddopt(optlist_id, option,

dvalue)
integer function dbaddiopt(optlist_id, option,

ivalue)
integer function dbaddropt(optlist_id, option,

rvalue)
integer function dbcalcfl(znodelist, nnodes,

origin, zshapesize, zshapecnt, nzshapes,
matlist, bnd_method, id)

integer function dbclose(dbid)
integer function dbcreate(pathname, lpathname,

mode, target, fileinfo, lfileinfo,
filetype, dbid)

integer function dbfgetca(dbid, name, lname,
values, nvalues)

integer function dbfreeoptlist(optlist_id)
integer function dbgetca(dbid, name, lname,

enames, lenames, elengths, nelems, values,
nvalues, datatype)

integer function dbgetcurve(dbid, curvename,
lcurvename, maxpoints, xvals, yvals,
datatype, npoints)

integer function dbinqca(dbid, name, lname,
tlenames, nelems, nvalues, datatype)

integer function dbinqfile(filename)
integer function dbinqlen(dbid, varname,

lvarname, len)
integer function dbmkdir(dbid, dirname,

ldirname, id)
integer function dbmkoptlist(maxopts,

optlist_id)
integer function dbopen(name, lname, type,

mode, dbid)
integer function dbputca(dbid, name, lname,

enames, lenames, elengths, nelems, values,
nvalues, datatype, optlist_id, id)

integer function dbputcurve (dbid, curvename,
lcurvename, xvals, yvals, datatype,
npoints, optlist_id, id)

integer function dbputfl(dbid, name, lname,
nfaces, ndims, nodelist,lnodelist, origin,
zoneno, shapesize, shapecnt, nshapes,
types, typelist, ntypes, idfl)

integer function dbputmat(dbid, name, lname,
meshname, lmeshname, nmat, matnos,
matlist, dims, ndims, mix_next, mix_mat,
mix_zone, mix_vf, mixlen, datatype,
optlist_id, id)

integer function dbputmmat(dbid, name, lname,
nmat, matnames, lmatnames, optlist_id, id)

integer function dbputmmesh(dbid, name, lname,
nmesh, meshnames, lmeshnames, meshtypes,
optlist_id, id)

integer function dbputmsp(dbid, name, lname,
matname, lmatname, nmat, nmatspec,
speclist, dims, ndims, nspecies_mf,
species_mf, mix_speclist, mixlen,
datatype, optlist_id, id)

integer function dbputmvar(dbid, name, lname,
mmeshname, lmmeshname, optlist_id, id)

integer function dbputpm(dbid, name, lname,
ndims, x, y, z, nels, datatype,
optlist_id, id)

integer function dbputpv1(dbid, name, lname,
meshname, lmeshname, var, nels, datatype,
optlist_id, id)

integer function dbputqm(dbid, name, lname,
xname, lxname, yname, lyname, zname,
lzname, x, y, z, dims, ndims, datatype,
coordtype, optlist_id, id)

integer function dbputqv1(dbid, name, lname,
meshname, lmeshname, var, dims, ndims,
mixvar, mixlen, datatype, centering,
optlist_id, id)

integer function dbputum(dbid, name, lname,
ndims, x, y, z, xname, lxname, yname,
lyname, zname, lzname, datatype, nnodes,
nzones, zlname, lzlname, flname, lflname,
optlist_id, id)

integer function dbputuv1(dbid, name, lname,
meshname, lmeshname, var, nels, mixvar,
mixlen, datatype, centering, id)

integer function dbputzl(dbid, name, lname,
nzones, ndims, nodelist, lnodelist,
origin, shapesize, shapecnt, nshapes,
idzl)

integer function dbrdvar(dbid, varname,
lvarname, result)

integer function dbrdvarslice(dbid, varname,
lvarname, offset, length, stride, ndims,
result)

integer function dbsetdir(dbid, pathname,
lpathname)

integer function dbshowerrors(level)
integer function dbwrite(dbid, varname,

lvarname, var, dims, ndims, datatype)
integer function dbwriteslice(dbid, varname,

lvarname, var, datatype, offset, length,
stride, ndims)

Silo User’s Guide v

Table of Contents

List of Figures ..vii

Chapter 1. Introduction to Silo
Overview.. 1-1
Silo Architecture .. 1-2

Reading Silo Files .. 1-2
Writing Silo files.. 1-2

Terminology... 1-2
Computational Meshes Supported by Silo... 1-3

Quadrilateral-Based Meshes and Related Data.. 1-3
UCD-Based Meshes and Related Data .. 1-4
Point Meshes and Related Data ... 1-5

Silo Objects.. 1-5
Silo Directories .. 1-7

Chapter 2. C Functions
C Interface Overview... 2-1

Error Handling ... 2-1
Optional Arguments... 2-2
Using the Silo Option Parameter ... 2-2
C Calling Sequence.. 2-2

vi Silo User’s Guide

Chapter 3. Fortran Functions
Fortran Interface... 3-1

Error Handling ... 3-1
Optional Arguments... 3-1
Using the Silo Option Parameter ... 3-2
Fortran Calling Sequence... 3-2

Appendix A. Data Structures..A-1

Glossary ..G-1

Silo User’s Guide vii

List of Figures

Figure 1-1: Model of Silo Architecture. .. 1-2
Figure 1-2: Examples of quadrilateral meshes. ... 1-3
Figure 1-3: Phoney zones around a collinear quadrilateral mesh.. 1-4
Figure 1-4: Sample 2-D UCD Meshes... 1-4
Figure 1-5: UCD 2-D and 3-D Cell Shapes... 1-5
Figure 1-6: Sample hierarchy within a Silo file... 1-7
Figure 2-1: Example using mixed data arrays for representing material information............. 2-77
Figure 2-2: Example usage of UCD zonelist and external facelist variables. 2-99
Figure 2-3: Node ordering for UCD zone shapes. ... 2-100
Figure 2-4: Example usage of UCD zonelist combining a hex and 2 polyhedra................... 2-101
Figure 2-5: Array slice... 2-113
Figure 2-6: Array slice... 2-123
Figure 3-1: Example using mixed data arrays for representing material information............. 3-28
Figure 3-2: Node ordering for UCD zone shapes. ... 3-47
Figure 3-3: Example usage of UCD zonelist and external facelist variables. 3-48
Figure 3-4: Array slice... 3-54
Figure 3-5: Array slice... 3-59

viii Silo User’s Guide

Silo User’s Guide 1-1

Chapter 1 Introduction to Silo

1.1. Overview

Silo is a library which implements an application programing interface
(API) designedfor readingandwriting scientificdata.It is ahigh-level, por-
table interface that was developed at Lawrence Livermore National Labora-
tory to address difficult database issues, such as different, incompatible file
formatsandlibraries,mostof whichusednon-standardfeaturesof theCray
compilers. In addition, none of the previous libraries had portable binary
file formats.

Silo takes advantage of features in net-CDF (Network Common Data
Form)1 and PDB (Portable Data Base), a binary database file format devel-
oped at LLNL by Stewart Brown, to build a powerful data access mecha-
nism and to provide a higher level view of the data. It assigns meaning to
different types of objects and supports a hierarchical directory structure.
Entities managed by the Silo library include not just arrays, but also
meshes,meshvariables,materialdata,andcurves.TheSilo interfaceallows
the development of generic tools. A general purpose datafile and a set of
generalmeshdescriptionscanbedefinedandusedratherthanwriting tools
for each specific datafile and mesh. For example, MeshTV is a general pur-
poseanalysistool whichoperateson thetypesof meshessupportedby Silo
(quadrilateral, UCD, and point).

Silo is used as our standard, portable programming interface to produce
simulation code restart files, link files, and files for the graphic output pro-
grams that help to visualize simulation results.

1. The Unidata Program Center is managed by the University Corporation for
Atmospheric Research and sponsored by the National Science Foundation. The
current netCDF software can be obtained from anonymous FTP atuni-
data.ucar.edu.

Architecture

1-2 Silo User’s Guide

1.2. Silo Ar chitecture

Silo supports four input ports and one output port.

In the input model, Silo uses the PDBext (PDBLib extensions) interface to
read objects written by that interface(Fig. 1-1). Silo can also read objects in
Taurus formatted files and objects in SDX-formatted data.

In the output model, Silo uses the PDBext interface to write objects to a Silo
file.

1.2.1. Reading Silo Files

A subset of the Silo functions contains application-level routines to be used
for reading mesh and mesh-related data from a variety of sources, including
Silo files, Panacea files, and UNIX sockets. These functions return com-
pound C data structures which represent data in a general way.

1.2.2. Writing Silo files

A subset of the Silo functions contains application-level routines to be used
for writing mesh and mesh-related data into Silo files.

In the C interface, the application provides a compound C data structure
representing the data. In the Fortran interface, the data is passed via individ-
ual arguments.

Figure 1-1: Model of Silo Architecture.

1.3. Terminology

Here is a short summary of some of the terms used throughout the Silo
interface and documentation. These terms are common to most computer
simulation environments.

Block This is the fundamental building block of a computational mesh. It
defines the nodal coordinates of one contiguous section of a mesh (also
known as a mesh-block).

Input and Output

Application
Silo

PDBext SDX Taurus

PDBLib
UNIX

sockets
UNIX
file I/O

Input only

Data format
interfaces

Interface
implementations

Computational Meshes Supported by Silo

Silo User’s Guide 1-3

Mesh A computationalmesh,composedof oneor moremesh-blocks.A mesh
can be composed of mesh-blocks of different types (quad, UCD) as
well as of different shapes.

Variable Data which are associated in some way with a computational mesh.
Variables usually represent values of some physics quantity (e.g., pres-
sure). Values are usually located either at the mesh nodes or at zone
centers.

Material A physical material being modeled in a computer simulation.

Node A mathematical point. The fundamental building-block of a mesh or
zone.

Zone An areaor volumeof whichmeshesarecomprised.Zonesarepolygons
or polyhedra with nodes as vertices (see “UCD 2-D and 3-D Cell
Shapes” on page1-5.)

1.4. Computational Meshes Supported by Silo

Silo supports three classes, or types, of meshes — quadrilateral, unstruc-
tured, and point.

1.4.3. Quadrilateral-Based Meshes and Related Data

A quadrilateral mesh is one which contains four nodes per zone in 2-D and
eightnodesperzone(four nodesperzoneface)in 3-D.Quadmeshescanbe
either regular, rectilinear, or curvilinear, but they must be logically rectan-
gular (Fig. 1-2).

Figure 1-2: Examples of quadrilateral meshes.

Rectilinear Curvilinear

X

Y

X = {0.0,1.0,2.0,3.0,

Y = {0.0,1.0,2.0,3.0}

X = {0.0,1.0,2.0,
0.0,0.8,1.6,
0.0,0.4,0.8,
0.0,0.0,0.0}

Y = {0.0,0.0,0.0,
0.0,0.4,0.8,
0.0,0.8,1.6,
0.0,1.0,2.0}

X

Y

 4.0,5.0}

UCD Meshes

1-4 Silo User’s Guide

A quadrilateral mesh can have “phoney” zones—a layer of zones adjacent
to oneor moreof the“real” meshboundaries(Fig. 1-3).Oneuseof this fea-
ture is to simulate boundary conditions such as a pressure profile.

Figure 1-3: Phoney zones around a collinear quadrilateral mesh.

1.4.4. UCD-Based Meshes and Related Data

An unstructured (UCD) mesh is a very general mesh representation; it is
composed of an arbitrary list of zones of arbitrary sizes and shapes. Most
meshes,includingquadrilateralones,canberepresentedasanunstructured
mesh (Fig. 1-4). Because of their generality, however, unstructured meshes
require more storage space and more complex algorithms.

In UCD meshes, the basic concept of zones (cells) still applies, but there is
no longer an implied connectivity between a zone and its neighbor, as with
thequadrilateralmesh.In otherwords,givena2-D quadrilateralmeshzone
accessedby (i, j), oneknowsthatthiszone’sneighborsare(i-1,j), (i+1,j), (i,
j-1), and so on. This is not the case with a UCD mesh.

In a UCD mesh, a structure called a zonelist is used to define the nodes
whichmakeupeachzone.A UCD meshneednotbecomposedof zonesof
just one shape (Fig. 1-5). Part of the zonelist structure describes the shapes
of the zones in the mesh and a count of how many of each zone shape
occurs in the mesh. The facelist structure is analogous to the zonelist struc-
ture, but defines the nodes which make up each zoneface.

Figure 1-4: Sample 2-D UCD Meshes

“Phoney” zones

Silo Objects

Silo User’s Guide 1-5

Figure 1-5: UCD 2-D and 3-D Cell Shapes

1.4.5. Point Meshes and Related Data

A point mesh consists of a set of locations, or points, in space. This type of
meshis well suitedfor representingrandomscalardata,suchastracerparti-
cles.

1.5. Silo Objects

Objectsareagroupingmechanismfor maintainingrelatedvariables,dimen-
sions, and other data. The Silo library understands and operates on specific
types of objects including the previously described computational meshes
andrelateddata.Theuseris alsoableto definearbitraryobjectsfor storage
of data if the standard Silo objects are not sufficient.

The objects are generalized representations for data commonly found in
physics simulations. These objects include:

Quadmesh A quadrilateral mesh. At a minimum, this must include the dimension
and coordinate data, but typically also includes the mesh’s coordinate
system, labelling and unit information, minimum and maximum
extents, and valid index ranges.

Quadvar A variable associated with a quadrilateral mesh. At a minimum, this
must include the variable’s data, centering information (node-centered
vs.zonecentered),andthenameof thequadmeshwith which thisvari-
able is associated. Additional information, such as time, cycle, units,
label, and index ranges can also be included.

Ucdmesh An unstructured mesh1. At a minimum, this must include the dimen-
sion, connectivity, and coordinate data, but typically also includes the

Tetrahedron Pyramid Prism Hexahedron

QuadrilateralTriangleLinePoint

Silo Objects

1-6 Silo User’s Guide

mesh’s coordinate system, labelling and unit information, minimum and
maximum extents, and a list of face indices.

Ucdvar A variable associated with a UCD mesh. This at a minimum must
include the variable’s data, centering information (node-centered vs.
zone-centered), and the name of the UCD mesh with which this vari-
able is associated. Additional information, such as time, cycle, units,
and label can also be included.

Pointmesh A point mesh. At a minimum, this must include dimension and coordi-
nate data.

Multimat A set of materials. This object contains the names of the materials in the
set.

Multimatspecies A set of material species. This object contains the names of the material
species in the set.

Multimesh A set of meshes. This object contains the names of and types of the
meshes in the set.

Multivar Mesh variable data associated with a multimesh.

Material Material information. This includes the number of materials present, a
list of valid material identifiers, and a zonal-length array which contains
the material identifiers for each zone.

Material species Extra material information. A material species is a type of a material.
They are used when a given material (i.e. air) may be made up of other
materials (i.e. oxygen, nitrogen) in differing amounts.

Zonelist Zone-oriented connectivity information for a UCD mesh. This object
contains a sequential list of nodes which identifies the zones in the
mesh, and arrays which describe the shape(s) of the zones in the mesh.

Facelist Face-oriented connectivity information for a UCD mesh. This object
contains a sequential list of nodes which identifies the faces in the
mesh, and arrays which describe the shape(s) of the faces in the mesh. It
may optionally include arrays which provide type information for each
face.

Curve X versus Y data. This object must contain at least the domain and range
values, along with the number of points in the curve. In addition, a title,
variable names, labels, and units may be provided.

Variable Array data. This object contains, in addition to the data, the dimensions
and data type of the array. This object is not required to be associated
with a mesh.

1. Unstructured cell data (UCD) is a term commonly used to denote an arbitrarily
connected mesh. Such a mesh is composed of vectors of coordinate values along
with an index array which identifies the nodes associated with each zone and/or
face. Zones may contain any number of nodes for 2-D meshes, and either four,
five, six, or eight nodes for 3-D meshes.

Silo Directories

Silo User’s Guide 1-7

1.6. Silo Directories

Silo supports directories as well as objects. Directories allow the user to
structure a database into a hierarchy that is analogous to a UNIX file sys-
tem (Fig. 1-6).

In a Silo file, a directory called RootDir represents the top of the hierarchy
within a database. Although it is possible for RootDir to be the only direc-
tory in a Silo file, in general there are other directories branching from it
which in turn may have directories branching from them. There is no limit
to the number of branches or levels in the resulting tree structure.

From a given directory one sees only the directories and objects directly
below it in the hierarchy. In other words, each Silo directory contains a vir-
tual Silo file. Silo provides a path selection facility to move up and down the
hierarchy of directories. In the figure below, if the current position in the
hierarchy is “Dir 1”, then the only items returned by a “list-contents” call
would be “Var 1” and “Dir 4”. Note that this concept is analogous to a hier-
archical file system: when one issues a “list files” command, only the files
in the current directory are listed. By changing directories, one can “see”
the contents of other parts of the file system.

Figure 1-6: Sample hierarchy within a Silo file.

RootDir

Dir 1 Dir 2 Dir 3

Var 1 Dir 4 Var 2 Obj 1 Var 3

Var 4 Obj 2

Silo Directories

1-8 Silo User’s Guide

Silo User’s Guide 2-1

Chapter 2 C Functions

2.1. C Interface Overview

This chapter contains the C interface function summaries for the Silo input
and output packages. The interface supports both quadrilateral and UCD-
based data. The functions are presented in alphabetical order.

2.1.1. Error Handling

Silo has an error-reporting function DBShowErrors() that allows the pro-
grammer to tailor the reporting of errors. This function takes two argu-
ments. The first argument is the error level, which is one of the following
values:

The second argument is a function pointer to an error handling function.
This function will be passed a string that is part of the error message (simi-
lar to the perror() function). If the function pointer is NULL, then the library
will issue error messages to the standard error stream.

Error level value Error action

DB_ALL Show all errors, beginning with the (possibly internal) routine
that first detected the error and continuing up the call stack
to the application.

DB_ABORT Same as DB_ALL except abort() is called after the error
message is printed.

DB_TOP (Default) Only the top-level Silo functions issue error mes-
sages.

DB_NONE The library does not handle error messages. The application
is responsible for checking the return values of the Silo func-
tions and handling the error.

C Interface Overview

2-2 Silo User’s Guide

The error text and erring function name can be obtained by calling DBErr-
String() or DBErrFunc(). The internal error number can also be obtained by
calling DBErrno().

2.1.2. Optional Arguments

The functions described below may have optional arguments. By optional,
it is meant that a dummy value can be supplied instead of an actual value.
An argument to a C function which the user does not want to provide, and
which is documented as being optional, should be replaced with a NULL
(as defined in the file silo.h).

2.1.3. Using the Silo Option Parameter

Many of the functions take as one of their arguments a list of option-name/
option-value pairs. In this way additional information can be passed to a
function without having to change the function's interface. The following
sequence of function declarations outlines the procedure for creating and
populating such a list:

DBoptlist *DBMakeOptlist (int maxopts) /* Create a list with
maximum list length */

int DBAddOption (/* Add an option to the list: */
DBoptlist *optlist, /* the list, */
int option_id, /* the option, */
void *option_value /* the option's value */
)

2.1.4. C Calling Sequence

The functions in the Silo output package should be called in a particular
order.

2.1.4.1. Write Sequence
Start by creating a Silo file, with DBCreate(), create any necessary directo-
ries, then call the remaining routines as needed for writing out the mesh,
material data, and any physics variables associated with the mesh.

Schematically, your program should look something like this:

DBCreate

DBMkdir
DBSetDir

DBPutQuadmesh
DBPutQuadvar1
DBPutQuadvar1
. . .

DBSetDir

DBMkdir
DBSetDir

C Interface Overview

Silo User’s Guide 2-3

DBPutZonelist
DBPutFacelist
DBPutUcdmesh
DBPutMaterial
DBPutUcdvar1
. . .

DBSetDir
DBClose

2.1.4.2. Example of C Calling Sequence for writing
The following C code is an example of the creation of a Silo file with just
one directory (the root):

#include <silo.h>
#include <string.h>

int main()
{
 DBfile *file = NULL; /* The Silo file pointer */
 char *coordnames[2]; /* Names of the coordinates */
 float nodex[4]; /* The coordinate arrays */
 float nodey[4];
 float *coordinates[2]; /* The array of coordinate
 arrays */
 int dimensions[2]; /* The number of nodes in
 each dimension */

 /* Create the Silo file */
 file = DBCreate(“sample.silo”, DB_CLOBBER, DB_LOCAL, NULL,
 DB_PDB);

 /* Name the coordinate axes ‘X’ and ‘Y’ */
 coordnames[0] = strdup(“X”);
 coordnames[1] = strdup(“Y”);

 /* Give the x coordinates of the mesh */
 nodex[0] = -1.1;
 nodex[1] = -0.1;
 nodex[2] = 1.3;
 nodex[3] = 1.7;

 /* Give the y coordinates of the mesh */
 nodey[0] = -2.4;
 nodey[1] = -1.2;
 nodey[2] = 0.4;
 nodey[3] = 0.8;

 /* How many nodes in each direction? */
 dimensions[0] = 4;
 dimensions[1] = 4;

C Interface Overview

2-4 Silo User’s Guide

 /* Assign coordinates to coordinates array */
 coordinates[0] = nodex;
 coordinates[1] = nodey;

 /* Write out the mesh to the file */
 DBPutQuadmesh(file, “mesh1”, coordnames, coordinates,
 dimensions, 2, DB_FLOAT, DB_COLLINEAR, NULL);

 /* Close the Silo file */
 DBClose(file);

 return (0);
}

2.1.4.3. Read Sequence
Start by opening the Silo file with DBOpen(), then change to the required
directory, and then read the mesh, material, and variables. Schematically,
your program should look something like this:

DBOpen

DBSetDir
DBGetQuadmesh
DBGetQuadvar1
DBGetQuadvar1
. . .

DBSetDir
DBGetUcdmesh
DBGetUcdvar1
DBGetMaterial
. . .

DBClose

2.1.4.4. Example of C Calling Sequence for reading
The following C code is an example of reading the Silo file in the previous
example):

#include <silo.h>

int main()
{
 DBfile *file = NULL; /* The Silo file pointer */
 DBquadmesh *qm = NULL; /* The Quadmesh pointer */
 int i, j; /* Used for indexing for loops */
 int ndims; /* The number of dimensions */
 int *dims; /* The array of dimensions */

 /* Open up the Silo file */

C Interface Overview

Silo User’s Guide 2-5

 file = DBOpen(“sample.silo”, DB_UNKNOWN, DB_READ);

 /* Get the quadmesh */
 qm = DBGetQuadmesh(file, “mesh1”);

 /* Print out the information, if possible */
 if (qm != NULL)
 {
 ndims = qm->ndims;
 dims = qm->dims;

 printf(“Mesh information:\n”);
 printf(“(See Appendix A in Silo manual for explanation)\n”);
 printf(“id: %d\n”, qm->id);
 printf(“block_no: %d\n”, qm->block_no);
 printf(“name: \”%s\”\n”, qm->name);
 printf(“cycle: %d\n”, qm->cycle);
 printf(“time: %lf\n”, qm->time);
 printf(“coord_sys: %d\n”, qm->coord_sys);
 printf(“major_order: %d\n”, qm->major_order);
 printf(“stride[1-%d]:”, ndims);
 for (i = 0; i < ndims; i++)
 printf(“ %d”, qm->stride[i]);
 printf(“\ncoordtype: %d\n”, qm->coordtype);
 printf(“facetype: %d\n”, qm->facetype);
 printf(“planar: %d\n”, qm->planar);
 for (i = 0; i < ndims; i++)
 {
 printf(“dims[%d]:”, i);
 for (j = 0; j < dims[i]; j++)
 printf(“ %lf”, qm->coords[i][j]);
 printf(“\n”);
 }
 printf(“datatype: %d\n”, qm->datatype);
 printf(“min_extents[1-%d]:”, ndims);
 for (i = 0; i < ndims; i++)
 printf(“ %lf”, qm->min_extents[i]);
 printf(“\nmax_extents[1-%d]:”, ndims);
 for (i = 0; i < ndims; i++)
 printf(“ %lf”, qm->max_extents[i]);
 printf(“\nlabels[1-%d]:”, ndims);
 for (i = 0; i < ndims; i++)
 printf(“ \”%s\””, qm->labels[i]);
 printf(“\nunits[1-%d]:”, ndims);
 for (i = 0; i < ndims; i++)
 printf(“ \”%s\””, qm->units[i]);
 printf(“\nndims: %d\n”, qm->ndims);
 printf(“nspace: %d\n”, qm->nspace);
 printf(“nnodes: %d\n”, qm->nnodes);
 printf(“dims[1-%d]:”, ndims);

C Interface Overview

2-6 Silo User’s Guide

 for (i = 0; i < ndims; i++)
 printf(“ %d”, qm->dims[i]);
 printf(“\norigin: %d\n”, qm->origin);
 printf(“min_index[1-%d]:”, ndims);
 for (i = 0; i < ndims; i++)
 printf(“ %d”, qm->min_index[i]);
 printf(“\nmax_index[1-%d]:”, ndims);
 for (i = 0; i < ndims; i++)
 printf(“ %d”, qm->max_index[i]);
 printf(“\n\n”);
 }
 else
 printf(“Unable to open mesh.\n”);

 /* Be safe and close the Silo file */
 DBClose(file);

 return (0);
}

C Interface Overview

Silo User’s Guide 2-7

Table 2-1. C Interface Functions and Fortran Equivalents

C Functions Fortran Equivalent C Functions Fortran Equivalent

DBAddDblComponent — DBGetVarLength —

DBAddFltComponent — DBInqCompoundarray dbinqca

DBAddIntComponent — DBInqFile dbinqfile

DBAddOption dbaddopt… DBInqMeshname —

DBAddStrComponent — DBInqMeshtype —

DBAddVarComponent — DBInqVarExists —

DBAlloc… — DBInqVarType —

DBCalcExternalFacelist dbcalcfl DBMakeObject —

DBCalcExternalFacelist2 — DBMakeOptlist dbmkoptlist

DBClearObject — DBMkDir dbmkdir

DBClearOptlist — DBOpen dbopen

DBClose dbclose DBPause —

DBContinue — DBPutCompoundarray dbputca

DBCreate dbcreate DBPutCurve dbputcurve

DBErrFunc — DBPutFacelist dbputfl

DBErrno — DBPutMaterial dbputmat

DBErrString — DBPutMatspecies dbputmsp

DBFortranAccessPointer — DBPutMultimat dbputmmat

DBFortranAllocPointer — DBPutMultimatspecies —

DBFortranRemovePointer — DBPutMultimesh dbputmmesh

DBFreeObject — DBPutPointmesh dbputpm

DBFreeOptlist dbfreeoptlist DBPutPointvar —

DBFree… — DBPutMultivar dbputmvar

DBGetAtt — DBPutPointvar1 dbputpv1

DBGetComponent — DBPutQuadmesh dbputqm

DBGetComponentType — DBPutQuadvar —

DBGetCompoundarray dbgetca DBPutQuadvar1 dbputqv1

DBGetCurve dbgetcurve DBPutUcdmesh dbputum

DBGetDataReadMask — DBPutUcdvar —

DBGetDir — DBPutUcdvar1 dbputuv1

DBGetMaterial — DBPutZonelist dbputzl

DBGetMatspecies — DBPutZonelist2 —

C Interface Overview

2-8 Silo User’s Guide

DBGetMultimat — DBReadAtt —

DBGetMultimatspecies — DBReadVar dbrdvar

DBGetMultimesh — DBReadVar1 —

DBGetMultivar — DBReadVarSlice dbrdvarslice

DBGetPointmesh — DBSetDataReadMask —

DBGetPointvar — DBSetDir dbsetdir

DBGetQuadmesh — DBShowErrors dbshowerrors

DBGetQuadvar — DBVersion —

DBGetToc — DBWrite dbwrite

DBGetUcdmesh — DBWriteComponent —

DBGetUcdvar — DBWriteObject —

DBGetVar — DBWriteSlice dbwriteslice

DBGetVarByteLength —

Table 2-1. C Interface Functions and Fortran Equivalents

C Functions Fortran Equivalent C Functions Fortran Equivalent

DBAddDblComponent

Silo User’s Guide 2-9

DBAddDblComponent—Add a double precision floating point component to an object.

Synopsis:

int DBAddDblComponent (DBobject *object, char *compname, double d)

Arguments:

object Pointer to an object. This object is created with the DBMakeObject function.

compname The component name.

d The value of the double precision floating point component.

Returns:

DBAddDblComponent returns zero on success and -1 on failure.

Description:

The DBAddDblComponent function adds a component of double precision floating point data to
an existing object.

DBAddFltComponent

2-10 Silo User’s Guide

DBAddFltComponent—Add a floating point component to an object.

Synopsis:

int DBAddFltComponent (DBobject *object, char *compname, double f)

Arguments:

object Pointer to an object. This object is created with the DBMakeObject function.

compname The component name.

f The value of the floating point component.

Returns:

DBAddFltComponent returns zero on success and -1 on failure.

Description:

The DBAddFltComponent function adds a component of floating point data to an existing object.

DBAddIntComponent

Silo User’s Guide 2-11

DBAddIntComponent—Add an integer component to an object.

Synopsis:

int DBAddIntComponent (DBobject *object, char *compname, int i)

Arguments:

object Pointer to an object. This object is created with the DBMakeObject function.

compname The component name.

i The value of the integer component.

Returns:

DBAddIntComponent returns zero on success and -1 on failure.

Description:

The DBAddIntComponent function adds a component of integer data to an existing object.

DBAddOption

2-12 Silo User’s Guide

DBAddOption—Add an option to an option list.

Synopsis:

int DBAddOption (DBoptlist *optlist, int option, void *value)

Arguments:

optlist Pointerto anoptionlist structurecontainingoption/valuepairs.Thisstructureis
created with the DBMakeOptlist function.

option Option definition. One of the predefined values described in the table in the
notes section of each command which accepts an option list.

value Pointer to the value associated with the provided option description. The data
type is implied byoption.

Returns:

DBAddOption returns a zero on success and -1 on failure.

Description:

The DBAddOption function adds an option/value pair to an option list. Several of the output func-
tions accept option lists to provide information of an ancillary nature.

DBAddStrComponent

Silo User’s Guide 2-13

DBAddStrComponent—Add a string component to an object.

Synopsis:

int DBAddStrComponent (DBobject *object, char *compname, char *s)

Arguments:

object Pointer to the object. This object is created with the DBMakeObject function.

compname The component name.

s The value of the string component. Silo copies the contents of the string.

Returns:

DBAddStrComponent returns zero on success and -1 on failure.

Description:

The DBAddStrComponent function adds a component of string data to an existing object.

DBAddVarComponent

2-14 Silo User’s Guide

DBAddVarComponent—Add a variable component to an object.

Synopsis:

int DBAddVarComponent (DBobject *object, char* compname,
char *vardata)

Arguments:

object Pointer to the object. This object is created with the DBMakeObject function.

compname Component name.

vardata Name of the variable object associated with the component (see Description).

Returns:

DBAddVarComponent returns zero on success and -1 on failure.

Description:

The DBAddVarComponent function adds a component of the variable type to an existing object.

The variable invardata is stored verbatim into the object. No translation or typing is done on
the variable as it is added to the object.

DBAlloc…

Silo User’s Guide 2-15

DBAlloc… —Allocate and initialize a Silo structure.

Synopsis:

DBcompoundarray *DBAllocCompoundarray (void)
DBedgelist *DBAllocEdgelist (void)
DBfacelist *DBAllocFacelist (void)
DBmaterial *DBAllocMaterial (void)
DBmatspecies *DBAllocMatspecies (void)
DBmeshvar *DBAllocMeshvar (void)
DBmultimesh *DBAllocMultimesh (void)
DBmultivar *DBAllocMultivar (void)
DBpointmesh *DBAllocPointmesh (void)
DBquadmesh *DBAllocQuadmesh (void)
DBquadvar *DBAllocQuadvar (void)
DBucdmesh *DBAllocUcdmesh (void)
DBucdvar *DBAllocUcdvar (void)
DBzonelist *DBAllocZonelist (void)

Returns:

Theseallocationfunctionsreturnapointerto anewly allocatedandinitializedstructureonsuccess
and NULL on failure.

Description:

The allocation functions allocate a new structure of the requested type, and initialize all values to
NULL or zero. There are counterpart functions for freeing structures of a given type (see
DBFree….See“C DataStructures”onpage1 in AppendixA for adescriptionof thesedatastruc-
tures.

DBCalcExternalFacelist

2-16 Silo User’s Guide

DBCalcExternalFacelist—Calculate an external facelist for a UCD mesh.

Synopsis:

DBfacelist *DBCalcExternalFacelist (int nodelist[], int nnodes,
int origin, int shapesize[],
int shapecnt[], int nshapes, int matlist[],
int bnd_method)

Arguments:

nodelist Array of node indices describing mesh zones.

nnodes Number of nodes in associated mesh.

origin Origin for indices in thenodelist array. Should be zero or one.

shapesize Array of lengthnshapes containing the number of nodes used by each zone
shape.

shapecnt Array of lengthnshapes containing the number of zones having each shape.

nshapes Number of zone shapes.

matlist Array containing material numbers for each zone (else NULL).

bnd_method Method to use for calculating external faces. See description below.

Returns:

DBCalcExternalFacelist returns a DBfacelist pointer on success and NULL on failure.

Description:

The DBCalcExternalFacelist function calculates an external facelist from the zonelist and zone
information describing a UCD mesh. The calculation of the external facelist is controlled by the
bnd_method parameter as defined in the table below:

For adescriptionof how to nodesfor theallowedsharesareenumerated,see“DBPutUcdmesh”on
page2-98.

bnd_method Meaning

0 Do not use material boundaries when computing external faces. The
matlist parameter can be replaced with NULL.

1 In addition to true external faces, include faces on material boundaries
between zones. Faces get generated for both zones sharing a common
face. This setting should not be used with meshes that contain mixed
material zones. If this setting is used with meshes with mixed material
zones, all faces which border a mixed material zone will be include. The
matlist parameter must be provided.

DBCalcExternalFacelist2

Silo User’s Guide 2-17

DBCalcExternalFacelist2—Calculate an external facelist for a UCD mesh
containing ghost zones.

Synopsis:

DBfacelist *DBCalcExternalFacelist2 (int nodelist[], int nnodes,
int low_offset, int hi_offset, int origin,
int shapetype[], int shapesize[],
int shapecnt[], int nshapes, int matlist[],
int bnd_method)

Arguments:

nodelist Array of node indices describing mesh zones.

nnodes Number of nodes in associated mesh.

lo_offset The number of ghost zones at the beginning of thenodelist.

hi_offset The number of ghost zones at the end of thenodelist.

origin Origin for indices in the nodelist array. Should be zero or one.

shapetype Array of lengthnshapes containing the type of each zone shape. See
description below.

shapesize Array of lengthnshapes containing the number of noes used by each zone
shape.

shapecnt Array of lengthnshapes containing the number of zones having each shape.

nshapes Number of zone shapes.

matlist Array containing material numbers for each zone (else NULL).

bnd_method Method to use for calculating external faces. See description below.

Returns:

DBCalcExternalFacelist2 returns a DBfacelist pointer on success and NULL on failure.

Description:

The DBCalcExternalFacelist2 function calculates an external facelist from the zonelist and zone
information describing a UCD mesh. The calculation of the external facelist is controlled by the
bnd_method parameter as defined in the table below:

bnd_method Meaning

0 Do not use material boundaries when computing external faces. The
matlist parameter can be replaced with NULL.

1 In addition to true external faces, include faces on material boundaries
between zones. Faces get generated for both zones sharing a com-
mon face. This setting should not be used with meshes that contain
mixed material zones. If this setting is used with meshes with mixed
material zones, all faces which border a mixed material zone will be
included. The matlist parameter must be provided.

DBCalcExternalFacelist2

2-18 Silo User’s Guide

The allowed shape types are described in the following table:

For a description of how the nodes for the allowed shapes are enumerated, see “DBPutUcdmesh”
on page 2-98.

Type Description

DB_ZONETYPE_BEAM A line segment

DB_ZONETYPE_POLYGON A polygon where nodes are enumerated to form a polygon

DB_ZONETYPE_TRIANGLE A triangle

DB_ZONETYPE_QUAD A quadrilateral

DB_ZONETYPE_POLYHED
RON

A polyhedron with nodes enumerated to form faces and
faces are enumerated to form a polyhedron

DB_ZONETYPE_TET A tetrahedron

DB_ZONETYPE_PYRAMID A pyramid

DB_ZONETYPE_PRISM A prism

DB_ZONETYPE_HEX A hexahedron

DBClearObject

Silo User’s Guide 2-19

DBClearObject—Clear an object.

Synopsis:

int DBClearObject (DBobject *object)

Arguments:

object Pointer to the object to be cleared. This object is created with the
DBMakeObject function.

Returns:

DBClearObject returns zero on success and -1 on failure.

Description:

TheDBClearObjectfunctionclearsanexistingobject.Thenumberof componentsassociatedwith
the object is set to zero.

DBClearOptlist

2-20 Silo User’s Guide

DBClearOptlist—Clear an optlist.

Synopsis:

int DBClearOptlist (DBoptlist *optlist)

Arguments:

optlist Pointerto anoptionlist structurecontainingoption/valuepairs.Thisstructureis
created with the DBMakeOptlist function.

Returns:

DBClearOptlist returns zero on success and -1 on failure.

Description:

The DBClearOptlist function removes all options from the given option list.

DBClose

Silo User’s Guide 2-21

DBClose—Close a Silo database.

Synopsis:

int DBClose (DBfile *dbfile)

Arguments:

dbfile Database file pointer.

Returns:

DBClose returns zero on success and -1 on failure.

Description:

The DBClose function closes a Silo database.

DBContinue

2-22 Silo User’s Guide

DBContinue—Continues a simulation

Synopsis:

int DBContinue (DBfile *dbfile)

Arguments:

dbfile Silo database pointer

Returns:

DBContinue returns a zero on success and -1 on failure.

Description:

The DBContinue function resumes a simulation that was paused with a DBPause function call.

DBCreate

Silo User’s Guide 2-23

DBCreate—Create a Silo output file.

Synopsis:

DBfile *DBCreate (char *pathname, int mode, int target,
char *fileinfo, int filetype)

Arguments:

pathname Path name of file to create. This can be either an absolute or relative path.

mode Creation mode. One of the predefined Silo modes: DB_CLOBBER or
DB_NOCLOBBER.

target Destination file format. One of the predefined types: DB_LOCAL, DB_SUN3,
DB_SUN4, DB_SGI, DB_RS6000, or DB_CRAY.

fileinfo Character string containing descriptive information about the file’s contents.
This information is usually printed by applications when this file is opened. If
no such information is needed, send NULL for this argument.

filetype Destination file type. Currently only one type is supported: DB_PDB.

Returns:

DBCreate returns a DBfile pointer on success and NULL on failure.

Description:

The DBCreate function creates a Silo file and initializes it for writing data.

Notes:

Theunderlyingdatabaselibrary (PDBLib) supportstheconceptof targetingoutputfiles.Thatis, a
Sun IEEE file can be created on the Cray, and vice versa. If creating files on a mainframe or other
powerful computer, it is best to target the file for the machine where the file will be processed.
Because of the extra time required to do the floating point conversions, however, one may wish to
bypass the targeting function by providing DB_LOCAL as the target.

Silo currently creates only one kind of file, a PDB file. This PDB file contains some special struc-
tures for handling objects and directory hierarchies.

Note that regardless of what type of file is created, it can still be read on any machine.

DBErrFunc

2-24 Silo User’s Guide

DBErrFunc—Get name of error-generating function

Synopsis:

char *DBErrFunc (void)

Returns:

DBErrFunc returns achar* containing the name of the function that generated the last error. It
cannot fail.

Description:

TheDBErrFuncfunctionis usedto find thenameof thefunctionthatgeneratedthelastSilo error.
It is implemented as a macro. The returned pointer points into Silo private space and must not be
modified or freed.

DBErrno

Silo User’s Guide 2-25

DBErrno—Get internal error number.

Synopsis:

int DBErrno (void)

Returns:

DBErrno returns the internal error number of the last error. It cannot fail.

Description:

TheDBErrnofunctionis usedto find thenumberof thelastSilo errormessage.It is implemented
as a macro. The error numbers are not guaranteed to remain the same between different release
versions of Silo.

DBErrString

2-26 Silo User’s Guide

DBErrString—Get error message.

Synopsis:

char *DBErrString (void)

Returns:

DBErrString returns achar* containing the last error message. It cannot fail.

Description:

TheDBErrStringfunctionis usedto find thelastSilo errormessage.It is implementedasamacro.
The returned pointer points into Silo private space and must not be modified or freed.

DBFortranAccessPointer

Silo User’s Guide 2-27

DBFortranAccessPointer—Access Silo objects created through the Fortran Silo
interface.

Synopsis:

void *DBFortranAccessPointer (int value)

Arguments:

value The value returned by a Silo Fortran function, referencing a Silo object.

Returns:

DBFortranAccessPointer returns a pointer to a Silo object (which must be cast to the appropriate
type) on success, and NULL on failure.

Description:

TheDBFortranAccessPointerfunctionallowsprogramswrittenin bothC andFortranto accessthe
samedatastructures.Many of theroutinesin theFortraninterfaceto Silo returnan“object id”, an
integerwhichrefersto aSilo object.DBFortranAccessPointerconvertsthis integerinto aC pointer
so that the sections of code written in C can access the Silo object directly.

See “DBFortranAllocPointer” on page2-28 and “DBFortranRemovePointer” on page2-29 for
more information about how to use Silo objects in code that uses C and Fortran together.

DBFortranAllocPointer

2-28 Silo User’s Guide

DBFortranAllocPointer—Facilitates accessing Silo objects through Fortran

Synopsis:

int DBFortranAllocPointer (void *pointer)

Arguments:

pointer A pointer to a Silo object for which a Fortran identifier is needed

Returns:

DBFortranAllocPointer returns an integer that Fortran code can use to reference the given Silo
object.

Description:

The DBFortranAllocPointer function allows programs written in both C and Fortran to access the
same data structures. Many of the routines in the Fortran interface to Silo use an “object id”, an
integerwhichrefersto aSilo object.DBFortanAllocPointerconvertsapointerto aSilo objectinto
anintegerthatFortrancodecanuse.In someways,this functionis theinverseof DBFortranAcces-
sPointer.

The integer that DBFortranAllocPointer returns is used to index a table of Silo object pointers.
When done with the integer, the entry in the table may be freed for use later through the use of
DBFortranRemovePointer.

See “DBFortranAccessPointer” on page2-27 and “DBFortranRemovePointer” on page2-29 for
more information about how to use Silo objects in code that uses C and Fortran together.

DBFortranRemovePointer

Silo User’s Guide 2-29

DBFortranRemovePointer—Removes a pointer from the Fortran-C index table

Synopsis:

void DBFortranRemovePointer (int value)

Arguments:

value An integer returned by DBFortranAllocPointer

Returns:

Nothing

Description:

TheDBFortranRemovePointerfunctionfreesupthestorageassociatedwith Silo objectpointersas
allocated by DBFortranAllocPointer.

Code that uses both C and Fortran may make use of DBFortranAllocPointer to allocate space in a
translation table so that the same Silo object may be referenced by both languages. DBFortranAc-
cessPointerprovidesaccessto thisSilo objectfrom theC side.OncetheFortransideof thecodeis
done referencing the object, the space in the translation table may be freed by calling DBFortran-
RemovePointer.

See “DBFortranAccessPointer” on page2-27 and “DBFortranAllocPointer” on page2-28 for
more information about how to use Silo objects in code that uses C and Fortran together.

DBFree…

2-30 Silo User’s Guide

DBFree…—Release memory associated with a Silo structure.

Synopsis:

void DBFreeCompoundarray (DBcompoundarray *x)
void DBFreeEdgelist (DBedgelist *x)
void DBFreeFacelist (DBfacelist *x)
void DBFreeMaterial (DBmaterial *x)
void DBFreeMatspecies (DBmatspecies *x)
void DBFreeMeshvar (DBmeshvar *x)
void DBFreeMultimesh (DBmultimesh *x)
void DBFreeMultivar (DBmultivar *x)
void DBFreePointmesh (DBpointmesh *x)
void DBFreeQuadmesh (DBquadmesh *x)
void DBFreeQuadvar (DBquadvar *x)
void DBFreeUcdmesh (DBucdmesh *x)
void DBFreeUcdvar (DBucdvar *x)
void DBFreeZonelist (DBzonelist *x)

Arguments:

x A pointerto astructurewhichis to befreed.Its typemustcorrespondto thetype
in the function name.

Returns:

These free functions return zero on success and -1 on failure.

Description:

Thefreefunctionsreleasethegivenstructureaswell asall memorypointedto by thesestructures.
This is the preferred method for releasing these structures. There are counterpart functions for
allocating structures of a given type (see DBAlloc…).

The functions will not fail if a NULL pointer is passed to them.

DBFreeObject

Silo User’s Guide 2-31

DBFreeObject—Free memory associated with an object.

Synopsis:

int DBFreeObject (DBobject *object)

Arguments:

object Pointerto theobjectto befreed.Thisobjectis createdwith theDBMakeObject
function.

Returns:

DBFreeObject returns zero on success and -1 on failure.

Description:

The DBFreeObject function releases the memory associated with the given object. The data asso-
ciated with the object’s components is not released.

DBFreeObject will not fail if a NULL pointer is passed to it.

DBFreeOptlist

2-32 Silo User’s Guide

DBFreeOptlist—Free memory associated with an option list.

Synopsis:

int DBFreeOptlist (DBoptlist *optlist)

Arguments:

optlist Pointerto anoptionlist structurecontainingoption/valuepairs.Thisstructureis
created with the DBMakeOptlist function.

Returns:

DBFreeOptlist returns a zero on success and -1 on failure.

Description:

The DBFreeOptlist function releases the memory associated with the given option list. The indi-
vidual option values are not freed.

DBFreeOptlist will not fail if a NULL pointer is passed to it.

DBGetAtt

Silo User’s Guide 2-33

DBGetAtt—Allocate space for, and return, an attribute value.

Synopsis:

void *DBGetAtt (DBfile *dbfile, char *varname, char *attname)

Arguments:

dbfile Database file pointer.

varname Name of the variable to which the attribute belongs.

attname Name of the attribute.

Returns:

DBGetAtt returnsapointerto newly allocatedspacecontainingtheattributevalueonsuccess,and
NULL on failure.

Description:

The DBGetAtt function allocates space for an attribute value associated with a variable, reads the
attributevalue,andreturnsapointerto thatspace.If theattributeor variabledoesnotexist, NULL
is returned.

Notes:

See DBReadAtt for a non-memory allocating version of this function.

DBGetComponent

2-34 Silo User’s Guide

DBGetComponent—Allocate space for, and return, an object component.

Synopsis:

void *DBGetComponent (DBfile *dbfile, char *objname,
char *compname)

Arguments:

dbfile Database file pointer.

objname Object name.

compname Component name.

Returns:

DBGetComponent returns a pointer to newly allocated space containing the component value on
success, and NULL on failure.

Description:

The DBGetComponent function allocates space for one object component, reads the component,
and returns a pointer to that space. If either the object or component does not exist, NULL is
returned. It is up to the application to cast the returned pointer to the appropriate type.

DBGetComponentType

Silo User’s Guide 2-35

DBGetComponentType—Return the type of an object component.

Synopsis:

int DBGetComponentType (DBfile *dbfile, char *objname,
char *compname)

Arguments:

dbfile Database file pointer.

objname Object name.

compname Component name.

Returns:

The values that are returned depend on the component’s type and how the component was written
into the object. The component types and their corresponding return values are listed in the table
below.

Description:

TheDBGetComponentTypefunctionreadsthecomponent’s typeandreturnsit. If eithertheobject
or component does not exist, DB_NOTYPE is returned. This function allows the application to
process the component without having to know its type in advance.

Component Type Return value

Integer DB_INT

Float DB_FLOAT

Double DB_DOUBLE

String DB_CHAR

Variable DB_VARIABLE

all others DB_NOTYPE

DBGetCompoundarray

2-36 Silo User’s Guide

DBGetCompoundarray—Read a compound array from a Silo database.

Synopsis:

DBcompoundarray *DBGetCompoundarray (DBfile *dbfile,
char *arrayname)

Arguments:

dbfile Database file pointer.

arrayname Name of the compound array.

Returns:

DBGetCompoundarray returns a pointer to a DBcompoundarray structure on success and NULL
on failure.

Description:

The DBGetCompoundarray function allocates a DBcompoundarray structure, reads a compound
array from the Silo database, and returns a pointer to that structure. If an error occurs, NULL is
returned.

Notes:

See“CompoundArray Definition” onpage1 in AppendixA for thedefinitionof DBcompoundar-
ray.

DBGetCurve

Silo User’s Guide 2-37

DBGetCurve—Read a curve from a Silo database.

Synopsis:

DBcurve *DBGetCurve (DBfile *dbfile, char *curvename)

Arguments:

dbfile Database file pointer.

curvename Name of the curve to read.

Returns:

DBCurve returns a pointer to a DBcurve structure on success and NULL on failure.

Description:

The DBGetCurve function allocates a DBcurve data structure, reads a curve from the Silo data-
base, and returns a pointer to that structure. If an error occurs, NULL is returned.

Notes:

See “Curve Definition” on page1 in Appendix A for the definition of DBcurve.

DBGetDataReadMask

2-38 Silo User’s Guide

DBGetDataReadMask—Get the current data read mask

Synopsis:

long DBGetDataReadMask (void)

Returns:

DBGetDataReadMask returns the current data read mask.

Description:

The DBGetDataReadMask allows the user to find out what mask is currently being used to read
the data within Silo objects.

Most Silo objects have a metadata portion and a data portion. The data portion is that part of the
object that consists of pointers to long arrays of data. These arrays are “problem sized”.

Settingthedatareadmask(usingtheDBSetDataReadMaskcall) allows for aDBGet* call to only
return part of the data. With the data read mask set to DBAll, the DBGet* functions return all of
theinformation.With thedatareadmasksetto DBNone,they returnonly themetadata.Themask
is a bit vector specifying which part of the data model should be read.

A special case is found in the DBCalc flag. Sometimes data is not stored in the file, but is instead
calculated from other information. The DBCalc flag controls this behavior. If it is turned off, the
data is not calculated. If it is turned on, the data is calculated.

The values that DBGetDataReadMask returns are binary-or’ed combinations of the values shown
in the following table:

Mask bit Meaning

DBAll All data values are read. This value is identical to specifying all of the
other mask bits or’ed together, setting all of the bit values to 1.

DBNone No data values are read. This value sets all of the bit values to 0.

DBCalc If data is calculable, calculate it. Otherwise, return NULL for that infor-
mation.

DBMatMatnos The lists of material numbers in material objects are read by the DBGet-
Material call.

DBMatMatnames The array of material names in material objects are read by the DBGet-
Material call.

DBMatMatlist The lists of the correspondence between zones and material numbers in
material objects are read by the DBGetMaterial call.

DBMatMixList The lists of mixed material information in material objects are read by
the DBGetMaterial call.

DBCurveArrays The data values of curves are read by the DBGetCurve call.

DBPMCoords The coordinate values of pointmeshes are read by the DBGetPointmesh
call.

DBGetDataReadMask

Silo User’s Guide 2-39

Note: The data read mask is currently recognized only by the following drivers: PDB, Taurus.

DBPVData The data values of pointvars are read by the DBGetPointvar call.

DBQMCoords The coordinate values of quadmeshes are read by the DBGetQuad-
mesh call.

DBQVData The data values of quadvars are read by the DBGetQuadvar call.

DBUMCoords The coordinate values of UCD meshes are read by the DBGetUcdmesh
call.

DBUMFacelist The facelists of UCD meshes are read by the DBGetUcdmesh call.

DBUMZonelist The zonelists of UCD meshes are read by the DBGetUcdmesh call.

DBUVData The data values of UCD variables are read by the DBGetUcdvar call.

DBFacelistInfo The nodelists and shape information in facelists are read by the DBGet-
Facelist call.

DBZonelistInfo The nodelist and shape information in zonelists are read by the DBGet-
Zonelist call.

Mask bit Meaning

DBGetDir

2-40 Silo User’s Guide

DBGetDir—Get the name of the current directory.

Synopsis:

int DBGetDir (DBfile *dbfile, char *dirname)

Arguments:

dbfile Database file pointer.

dirname Returnedcurrentdirectoryname.Thecallermustallocatespacefor thereturned
name. The maximum space used is 256 characters, including the NULL
terminator.

Returns:

DBGetDir returns zero on success and -1 on failure.

Description:

The DBGetDir function returns the name of the current directory.

DBGetMaterial

Silo User’s Guide 2-41

DBGetMaterial—Read material data from a Silo database.

Synopsis:

DBmaterial *DBGetMaterial (DBfile *dbfile, char *mat_name)

Arguments:

dbfile Database file pointer.

mat_name Name of the material variable to read.

Returns:

DBGetMaterial returns a pointer to a DBmaterial structure on success and NULL on failure.

Description:

The DBGetMaterial function allocates a DBmaterial data structure, reads material data from the
Silo database, and returns a pointer to that structure. If an error occurs, NULL is returned.

Notes:

See “Material Data Definition” on page2 in Appendix A for the definition of DBmaterial.

DBGetMatspecies

2-42 Silo User’s Guide

DBGetMatspecies—Read material species data from a Silo database.

Synopsis:

DBmatspecies *DBGetMatspecies (DBfile *dbfile, char *ms_name)

Arguments:

dbfile Database file pointer.

ms_name Name of the material species data to read.

Returns:

DBGetMatspecies returns a pointer to a DBmatspecies structure on success and NULL on failure.

Description:

The DBGetMatspecies function allocates a DBmatspecies data structure, reads material species
data from the Silo database, and returns a pointer to that structure. If an error occurs, NULL is
returned.

Notes:

See “Material Species Data Definition” on page2 in Appendix A for the definition of DBmatspe-
cies.

DBGetMultimat

Silo User’s Guide 2-43

DBGetMultimat—Read a multi-block material object from a Silo database

Synopsis:

DBmultimat *DBGetMultimat (DBfile *dbfile, char *name)

Arguments:

dbfile Database file pointer

name Name of the multi-block material object

Returns:

DBGetMultimat returns a pointer to a DBmultimat structure on success and NULL on failure.

Description:

TheDBGetMultimatfunctionallocatesaDBmultimatdatastructure,readsamulti-blockmaterial
from theSilo database,andreturnsapointerto thatstructure.If anerroroccurs,NULL is returned.

Notes:

See“Multi-Block MaterialDefinition” onpage4 in AppendixA for thedefinitionof DBmultimat.

DBGetMultimatspecies

2-44 Silo User’s Guide

DBGetMultimatspecies—Read a multi-block species from a Silo database.

Synopsis:

DBmultimesh *DBGetMultimatspecies (DBfile *dbfile, char *name)

Arguments:

dbfile Database file pointer.

name Name of the multi-block material species.

Returns:

DBGetMultimatspecies returns a pointer to a DBmultimatspecies structure on success and NULL
on failure.

Description:

The DBGetMultimatspecies function allocates a DBmultimatspecies data structure, reads a multi-
block material species from the Silo database, and returns a pointer to that structure. If an error
occurs, NULL is returned.

Notes:

See “Multi-Block Species Definition” on page4 in Appendix A for the definition of DBmulti-
matspecies.

DBGetMultimesh

Silo User’s Guide 2-45

DBGetMultimesh—Read a multi-block mesh from a Silo database.

Synopsis:

DBmultimesh *DBGetMultimesh (DBfile *dbfile, char *meshname)

Arguments:

dbfile Database file pointer.

meshname Name of the multi-block mesh.

Returns:

DBGetMultimesh returns a pointer to a DBmultimesh structure on success and NULL on failure.

Description:

TheDBGetMultimeshfunctionallocatesaDBmultimeshdatastructure,readsamulti-blockmesh
from theSilo database,andreturnsapointerto thatstructure.If anerroroccurs,NULL is returned.

Notes:

See “Multi-Block Mesh Definition” on page3 in Appendix A for the definition of DBmultimesh.

DBGetMultivar

2-46 Silo User’s Guide

DBGetMultivar—Read a multi-block variable definition from a Silo database.

Synopsis:

DBmultivar *DBGetMultivar (DBfile *dbfile, char *varname)

Arguments:

dbfile Database file pointer.

varname Name of the multi-block variable.

Returns:

DBGetMultivar returns a pointer to a DBmultivar structure on success and NULL on failure.

Description:

The DBGetMultivar function allocates a DBmultivar data structure, reads a multi-block variable
from theSilo database,andreturnsapointerto thatstructure.If anerroroccurs,NULL is returned.

Notes:

See “Multi-Block Variable Definition” on page4 in Appendix A for the definition of DBmultivar.

DBGetPointmesh

Silo User’s Guide 2-47

DBGetPointmesh—Read a point mesh from a Silo database.

Synopsis:

DBpointmesh *DBGetPointmesh (DBfile *dbfile, char *meshname)

Arguments:

dbfile Database file pointer.

meshname Name of the mesh.

Returns:

DBGetPointmesh returns a pointer to a DBpointmesh structure on success and NULL on failure.

Description:

The DBGetPointmesh function allocates a DBpointmesh data structure, reads a point mesh from
the Silo database, and returns a pointer to that structure. If an error occurs, NULL is returned.

Notes:

See “Point Mesh Definition” on page5 in Appendix A for the definition of DBpointmesh.

DBGetPointvar

2-48 Silo User’s Guide

DBGetPointvar—Read a point variable from a Silo database.

Synopsis:

DBmeshvar *DBGetPointvar (DBfile *dbfile, char *varname)

Arguments:

dbfile Database file pointer.

varname Name of the variable.

Returns:

DBGetPointvar returns a pointer to a DBmeshvar structure on success and NULL on failure.

Description:

The DBGetPointvar function allocates a DBmeshvar data structure, reads a variable associated
with apointmeshfrom theSilo database,andreturnsapointerto thatstructure.If anerroroccurs,
NULL is returned.

Notes:

See “Point Variable Definition” on page3 in Appendix A for the definition of DBmeshvar.

DBGetQuadmesh

Silo User’s Guide 2-49

DBGetQuadmesh—Read a quadrilateral mesh from a Silo database.

Synopsis:

DBquadmesh *DBGetQuadmesh (DBfile *dbfile, char *meshname)

Arguments:

dbfile Database file pointer.

meshname Name of the mesh.

Returns:

DBGetQuadmesh returns a pointer to a DBquadmesh structure on success and NULL on failure.

Description:

TheDBGetQuadmeshfunctionallocatesaDBquadmeshdatastructure,readsaquadrilateralmesh
from theSilo database,andreturnsapointerto thatstructure.If anerroroccurs,NULL is returned.

Notes:

See “Quad Mesh Definition” on page5 in Appendix A for the definition of DBquadmesh.

DBGetQuadvar

2-50 Silo User’s Guide

DBGetQuadvar—Read a quadrilateral variable from a Silo database.

Synopsis:

DBquadvar *DBGetQuadvar (DBfile *dbfile, char *varname)

Arguments:

dbfile Database file pointer.

varname Name of the variable.

Returns:

DBGetQuadvar returns a pointer to a DBquadvar structure on success and NULL on failure.

Description:

The DBGetQuadvar function allocates a DBquadvar data structure, reads a variable associated
with aquadrilateralmeshfrom theSilo database,andreturnsapointerto thatstructure.If anerror
occurs, NULL is returned.

Notes:

See “Quad Variable Definition” on page6 in Appendix A for the definition of DBquadvar.

DBGetToc

Silo User’s Guide 2-51

DBGetToc—Get the table of contents of a Silo database.

Synopsis:

DBtoc *DBGetToc (DBfile *dbfile)

Arguments:

dbfile Database file pointer.

Returns:

DBGetToc returns a pointer to a DBtoc structure on success and NULL on error.

Description:

The DBGetToc function returns a pointer to a DBtoc structure, which contains the names of the
various Silo object contained in the Silo database. The returned pointer points into Silo private
space and must not be modified or freed. Also, calls to DBSetDir will free the DBtoc structure,
invalidating the pointer returned previously by DBGetToc.

Notes:

See “Table of Contents Definiton” on page7 in Appendix A for the definition of DBtoc.

DBGetUcdmesh

2-52 Silo User’s Guide

DBGetUcdmesh—Read a UCD mesh from a Silo database.

Synopsis:

DBucdmesh *DBGetUcdmesh (DBfile *dbfile, char *meshname)

Arguments:

dbfile Database file pointer.

meshname Name of the mesh.

Returns:

DBGetUcdmesh returns a pointer to a DBucdmesh structure on success and NULL on failure.

Description:

The DBGetUcdmesh function allocates a DBucdmesh data structure, reads a UCD mesh from the
Silo database, and returns a pointer to that structure. If an error occurs, NULL is returned.

Notes:

See “UCD Mesh Definition” on page7 in Appendix A for the definition of DBucdmesh.

DBGetUcdvar

Silo User’s Guide 2-53

DBGetUcdvar—Read a UCD variable from a Silo database.

Synopsis:

DBucdvar *DBGetUcdvar (DBfile *dbfile, char *varname)

Arguments:

dbfile Database file pointer.

varname Name of the variable.

Returns:

DBGetUcdvar returns a pointer to a DBucdvar structure on success and NULL on failure.

Description:

TheDBGetUcdvar functionallocatesaDBucdvardatastructure,readsavariableassociatedwith a
UCD meshfrom theSilo database,andreturnsapointerto thatstructure.If anerroroccurs,NULL
is returned.

Notes:

See “UCD Variable Definition” on page8 in Appendix A for the definition of DBucdvar.

DBGetVar

2-54 Silo User’s Guide

DBGetVar—Allocate space for, and return, a simple variable.

Synopsis:

void *DBGetVar (DBfile *dbfile, char *varname)

Arguments:

dbfile Database file pointer.

varname Name of the variable

Returns:

DBGetVar returns a pointer to newly allocated space on success and NULL on failure.

Description:

TheDBGetVar functionallocatesspacefor asimplevariable,readsthevariablefrom theSilo data-
base, and returns a pointer to the new space. If an error occurs, NULL is returned. It is up to the
application to cast the returned pointer to the correct data type.

Notes:

See DBReadVar and DBReadVar1 for non-memory allocating versions of this function.

DBGetVarByteLength

Silo User’s Guide 2-55

DBGetVarByteLength—Return the byte length of a simple variable.

Synopsis:

int DBGetVarByteLength (DBfile *dbfile, char *varname)

Arguments:

dbfile Database file pointer.

varname Variable name.

Returns:

DBGetVarByteLengthreturnsthelengthof thegivensimplevariablein bytesonsuccessand-1 on
failure.

Description:

The DBGetVarByteLength function returns the length of the requested simple variable, in bytes.
This is usefulfor determininghow muchmemoryto allocatebeforereadingasimplevariablewith
DBReadVar. Notethatthiswouldnotbeaconcernif oneusedtheDBGetVar function,whichallo-
cates space itself.

DBGetVarLength

2-56 Silo User’s Guide

DBGetVarLength—Return the number of elements in a simple variable.

Synopsis:

int DBGetVarLength (DBfile *dbfile, char *varname)

Arguments:

dbfile Database file pointer.

varname Variable name.

Returns:

DBGetVarLengthreturnsthenumberof elementsin thegivensimplevariableonsuccessand-1 on
failure.

Description:

The DBGetVarLength function returns the length of the requested simple variable, in number of
elements. For example a 16 byte array containing 4 floats has 4 elements.

DBGetVarType

Silo User’s Guide 2-57

DBGetVarType—Return the Silo datatype of a simple variable.

Synopsis:

int DBGetVarType (DBfile *dbfile, char *varname)

Arguments:

dbfile Database file pointer.

varname Variable name.

Returns:

DBGetVarType returns the Silo datatype of the given simple variable on success and -1 on failure.

Description:

The DBGetVarType function returns the Silo datatype of the requested simple variable. For exam-
ple, DB_FLOAT for float variables.

Notes:

This only works for simple Silo variables (those written using DBWrite or DBWriteSlice). To
query the type of other variables, use DBInqVarType instead.

DBInqCompoundarray

2-58 Silo User’s Guide

DBInqCompoundarray—Inquire Compound Array attributes.

Synopsis:

int DBInqCompoundarray (DBfile *dbfile, char *name,
char *elemnames[], int *elemlengths,
int nelems, int nvalues, int datatype)

Arguments:

dbfile Database file pointer.

name Name of the compound array.

elemnames Returned array of length nelems containing pointers to the names of the array
elements.

elemlengths Returned array of lengthnelems containing the lengths of the array elements.

nelems Returned number of array elements.

nvalues Returned number of total values in the compound array.

datatype Datatype of the data values. One of the predefined Silo data types.

Returns:

DBInqCompoundarray returns zero on success and -1 on failure.

Description:

The DBInqCompoundarray function returns information about the compound array. It does not
return the data values themselves; use DBGetCompoundarray instead.

DBInqFile

Silo User’s Guide 2-59

DBInqFile—Inquire iffilename is a Silo file.

Synopsis:

int DBInqFile (char *filename)

Arguments:

filename Name of file.

Returns:

DBInqFilenamereturns0 if filename is notaSilo file, apositivenumberif filename is aSilo
file, and a negative number if an error occurred.

Description:

The DBInqFile function is mainly used for its return value, as seen above.

DBInqMeshname

2-60 Silo User’s Guide

DBInqMeshname—Inquire the mesh name associated with a variable.

Synopsis:

int DBInqMeshname (DBfile *dbfile, char *varname, char *meshname)

Arguments:

dbfile Database file pointer.

varname Variable name.

meshname Returnedmeshname.Thecallermustallocatespacefor thereturnedname.The
maximum space used is 256 characters, including the NULL terminator.

Returns:

DBInqMeshname returns zero on success and -1 on failure.

Description:

TheDBInqMeshnamefunctionreturnsthenameof ameshassociatedwith ameshvariable.Given
the name of a variable to access, one must call this function to find the name of the mesh before
calling DBGetQuadmesh or DBGetUcdmesh.

DBInqMeshtype

Silo User’s Guide 2-61

DBInqMeshtype—Inquire the mesh type of a mesh.

Synopsis:

int DBInqMeshtype (DBfile *dbfile, char *meshname)

Arguments:

dbfile Database file pointer.

meshname Mesh name.

Returns:

DBInqMeshtype returns the mesh type on success and -1 on failure.

Description:

The DBInqMeshtype function returns the type of the given mesh. The value returned is described
in the following table:

Mesh Type Returned Value

Multi-Block DB_MULTIMESH

UCD DB_UCDMESH

Pointmesh DB_POINTMESH

Quad (Collinear) DB_QUAD_RECT

Quad (Non-Collinear) DB_QUAD_CURV

DBInqVarExists

2-62 Silo User’s Guide

DBInqVarExists—Queries variable existence

Synopsis:

int DBInqVarExists (DBfile *dbfile, char *name);

Arguments:

dbfile Database file pointer.

name Object name.

Returns:

DBInqVarExists returnsnon-zero if the object exists in the file. Zero otherwise.

Description:

The DBInqVarExists function is used to check for existence of an object in the given file.

If an object was written to a file, but the file has yet to be DBClose’d, the results of this function
querying that variable are undefined.

DBInqVarType

Silo User’s Guide 2-63

DBInqVarType—Return the type of the given object

Synopsis:

DBObjectType DBInqVarType (DBfile *dbfile, char *name);

Arguments:

dbfile Database file pointer.

name Object name.

Returns:

DBInqVarType returns the DBObjectType corresponding to the given object.

Description:

The DBInqVarType function returns the DBObjectType of the given object. The value returned is
described in the following table:

Object Type Returned Value

Invalid object or the object was
not found in the file.

DB_INVALID_OBJECT

Quadmesh DB_QUADMESH

Quadvar DB_QUADVAR

UCD mesh DB_UCDMESH

UCD variable DB_UCDVAR

Multiblock mesh DB_MULTIMESH

Multiblock variable DB_MULTIVAR

Multiblock material DB_MULTIMAT

Multiblock material species DB_MULTIMATSPECIES

Material DB_MATERIAL

Material species DB_MATSPECIES

Facelist DB_FACELIST

Zonelist DB_ZONELIST

Edgelist DB_EDGELIST

Curve DB_CURVE

Pointmesh DB_POINTMESH

Pointvar DB_POINTVAR

Compound array DB_ARRAY

Directory DB_DIR

DBInqVarType

2-64 Silo User’s Guide

The function will signal an error if the given name does not exist in the file.

Other variable (one written out
using DBWrite.)

DB_VARIABLE

User-defined DB_USERDEF

Object Type Returned Value

DBMakeObject

Silo User’s Guide 2-65

DBMakeObject—Allocate an object of the specified length and initialize it.

Synopsis:

DBobject *DBMakeObject (char *objname, int objtype, int maxcomps)

Arguments:

objname Name of the object.

objtype Type of object. One of the predefined types: DB_QUADMESH,
DB_QUAD_RECT, DB_QUAD_CURV, DB_QUADVAR, DB_UCDMESH,
DB_UCDVAR, DB_POINTMESH, DB_POINTVAR, DB_MULTIMESH,
DB_MULTIVAR, DB_MATERIAL, DB_MATSPECIES, DB_FACELIST,
DB_ZONELIST, DB_EDGELIST, DB_CURVE, DB_ARRAY, or
DB_USERDEF.

maxcomps Maximum number of components needed for this object.

Returns:

DBMakeObject returns a pointer to the newly allocated and initialized object on success and
NULL on failure.

Description:

The DBMakeObject function allocates space for an object ofmaxcomps components.

DBMakeOptlist

2-66 Silo User’s Guide

DBMakeOptlist—Allocate an option list.

Synopsis:

DBoptlist *DBMakeOptlist (int maxopts)

Arguments:

maxopts Maximum number of options needed for this option list.

Returns:

DBMakeOptlist returns a pointer to an option list on success and NULL on failure.

Description:

The DBMakeOptlist function allocates memory for an option list and initializes it. Use the func-
tion DBAddOption to populate the option list structure, and DBFreeOptlist to free it.

DBMkDir

Silo User’s Guide 2-67

DBMkDir—Create a new directory in a Silo file.

Synopsis:

int DBMkDir (DBfile *dbfile, char *dirname)

Arguments:

dbfile Database file pointer.

dirname Name of the directory to create.

Returns:

DBMkDir returns zero on success and -1 on failure.

Description:

The DBMkDir function creates a new directory in the Silo file as a child of the current directory
(see DBSetDir). The directory name may be an absolute path name similar to “/dir/subdir”,
or may be a relative path name similar to “../../dir/subdir”.

DBOpen

2-68 Silo User’s Guide

DBOpen—Open an existing Silo file.

Synopsis:

DBfile *DBOpen (char *name, int type, int mode)

Arguments:

name Name of the file to open. Can be either an absolute or relative path.

type The type of file to open. One of the predefined types: DB_SDX, DB_PDB,
DB_TAURUS, or DB_UNKNOWN.

mode The mode of the file to open. One of the values DB_READ or DB_APPEND.

Returns:

DBOpen returns a DBfile pointer on success and a NULL on failure.

Description:

The DBOpen function opens an existing Silo file. If the filetype is DB_UNKNOWN, Silo will
guess at the file type, getting it right most of the time.

The mode parameter allows a user to append to an existing Silo file. If a file is DBOpen’ed with a
mode of DB_APPEND, the file will support write operations as well as read operations.

DBPause

Silo User’s Guide 2-69

DBPause—Pause a simulation

Synopsis:

int DBPause (DBfile *dbfile);

Arguments:

dbfile Silo database pointer.

Returns:

DBPause returns zero on success and -1 on failure.

Description:

The DBPause function pauses the specified simulation until DBContinue is called.

DBPutCompoundarray

2-70 Silo User’s Guide

DBPutCompoundarray—Write a Compound Array object into a Silo file.

Synopsis:

int DBPutCompoundarray (DBfile *dbfile, char *name,
char *elemnames[], int *elemlengths,
int nelems, void *values, int nvalues,
int datatype, DBoptlist *optlist);

Arguments:

dbfile Database file pointer

name Name of the compound array structure.

elemnames Array of lengthnelems containing pointers to the names of the elements.

elemlengths Array of lengthnelems containing the lengths of the elements.

nelems Number of simple array elements.

values Array whoselengthis determinedby nelems andelemlengths containing
the values of the simple array elements.

nvalues Total length of thevalues array.

datatype Data type of thevalues array. One of the predefined Silo types.

optlist Pointer to an option list structure containing additional information to be
included in the compound array object written into the Silo file. Use NULL is
there are no options.

Returns:

DBPutCompoundarray returns zero on success and -1 on failure.

Description:

TheDBPutCompoundarrayfunctionwritesacompoundarrayobjectinto aSilo file. A compound
array is an array whose elements are simple arrays. All of the simple arrays have elements of the
same data type, and each have a name.

Often, an application will partition a block of memory into named pieces, but write the block to a
database as a single entity. Fortran common blocks are used in this way. The compound array
object is an abstraction of this partitioned memory block.

DBPutCurve

Silo User’s Guide 2-71

DBPutCurve—Write a curve object into a Silo file

Synopsis:

int DBPutCurve (DBfile *dbfile, char *curvename, void *xvals,
void *yvals, int datatype, int npoints,
DBoptlist *optlist)

Arguments:

dbfile Database file pointer

curvename Name of the curve object

xvals Array of lengthnpoints containing the x-axis data values

yvals Array of lengthnpoints containing the y-axis data values

datatype Data type of thexvals andyvals arrays. One of the predefined Silo types.

npoints The number of points in the curve

optlist Pointer to an option list structure containing additional information to be
included in the compound array object written into the Silo file. Use NULL is
there are no options.

Returns:

DBPutCurve returns zero on success and -1 on failure.

Description:

The DBPutCurve function writes a curve object into a Silo file. A curve is a set of x/y points that
describes a two-dimensional curve.

Both thexvals andyvals arrays must have the same datatype.

The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” for details on the use of this construct.

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_LABEL int Problem cycle value. 0

DBOPT_XLABEL char * Label for the x-axis NULL

DBOPT_YLABEL char * Label for the y-axis NULL

DBOPT_XUNITS char * Character string defining the units for the
x-axis.

NULL

DBOPT_YUNITS char * Character string defining the units for the
y-axis

NULL

DBPutCurve

2-72 Silo User’s Guide

DBOPT_XVARNAME char * Name of the domain (x) variable. This is
the problem variable name, not the code
variable name passed into the xvals
argument.

NULL

DBOPT_YVARNAME char * Name of the domain (y) variable. This is
problem variable name, not the code vari-
able name passed into the yvals argu-
ment.

NULL

Option Name
Value

Data Type Option Meaning Default Value

DBPutFacelist

Silo User’s Guide 2-73

DBPutFacelist—Write a facelist object into a Silo file.

Synopsis:

int DBPutFacelist (DBfile *dbfile, char *name, int nfaces,
int ndims, int nodelist[], int lnodelist,
int origin, int zoneno[], int shapesize[],
int shapecnt[], int nshapes, int types[],
int typelist[], int ntypes)

Arguments:

dbfile Database file pointer.

name Name of the facelist structure.

nfaces Number of external faces in associated mesh.

ndims Number of spatial dimensions represented by the associated mesh.

nodelist Array of lengthlnodelist containing node indices describing mesh faces.

lnodelist Length of nodelist array.

origin Origin for indices in nodelist array. Either zero or one.

zoneno Array of lengthnfaces containing the zone number from which each face
came. Use a NULL for this parameter if zone numbering info is not wanted.
(MeshTV requires a non-NULLzoneno for pseudocolor plots.)

shapesize Array of lengthnshapes containing the number of nodes used by each face
shape (for 3-D meshes only).

shapecnt Array of lengthnshapes containing the number of faces having each shape
(for 3-D meshes only).

nshapes Number of face shapes (for 3-D meshes only).

types Array of lengthnfaces containing information about each face. This
argument is ignored ifntypes is zero, or if this parameter is NULL.

typelist Array of lengthntypes containingtheidentifiersfor eachtype.Thisargument
is ignored ifntypes is zero, or if this parameter is NULL.

ntypes Number of types, or zero if type information was not provided.

Returns:

DBPutFacelist returns zero on success or -1 on failure.

Description:

The DBPutFacelist function writes a facelist object into a Silo file. The name given to this object
can in turn be used as a parameter to the DBPutUcdmesh function.

DBPutFacelist

2-74 Silo User’s Guide

Notes:

See the write-up of DBPutUcdmesh for a full description of the facelist data structures. Note that
MeshTV expects this structure to contain descriptions of the external faces only. Also note that
MeshTV, in order to do pseudocolor plots correctly, requires a non-NULLzoneno.

DBPutMaterial

Silo User’s Guide 2-75

DBPutMaterial—Write a material data object into a Silo file.

Synopsis:

int DBPutMaterial (DBfile *dbfile, char *name, char *meshname,
int nmat, int matnos[], int matlist[],
int dims[], int ndims, int mix_next[],
int mix_mat[], int mix_zone[], float mix_vf[],
int mixlen, int datatype, DBoptlist *optlist)

Arguments:

dbfile Database file pointer.

name Name of the material data object.

meshname Name of the mesh associated with this information.

nmat Number of materials.

matnos Array of lengthnmat containing material numbers.

matlist Array whose dimensions are defined bydims andndims. It contains the
material numbers for each single-material (non-mixed) zone, and indices into
the mixed data arrays for each multi-material (mixed) zone. A negative value
indicatesamixedzone,andits absolutevalueis usedasanindex into themixed
data arrays.

dims Array of lengthndims which defines the dimensionality of thematlist
array.

ndims Number of dimensions inmatlist array.

mix_next Array of lengthmixlen of indices into the mixed data arrays (one-origin).

mix_mat Array of lengthmixlen of material numbers for the mixed zones.

mix_zone Optional array of lengthmixlen of back pointers to originating zones. The
origin is determined byDBOPT_ORIGIN. Even ifmixlen > 0, this argument
is optional.

mix_vf Array of lengthmixlen of volume fractions for the mixed zones.

mixlen Length of mixed data arrays (or zero if no mixed data is present). Ifmixlen >
0, then the “mix_” arguments describing the mixed data arrays must be non-
NULL.

datatype Volume fraction data type. One of the predefined Silo data types.

optlist Pointer to an option list structure containing additional information to be
included in the material object written into the Silo file. See the table below for
the valid options for this function. If no options are to be provided, use NULL
for this argument.

Returns:

DBPutMaterial returns zero on success and -1 on failure.

DBPutMaterial

2-76 Silo User’s Guide

Description:

The DBPutMaterial function writes a material data object into the current open Silo file. The min-
imum required information for a material data object is supplied via the standard arguments to this
function. The optlist argument must be used for supplying any information not requested
through the standard arguments.

Notes:

The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” for details on the use of this construct.

The model used for storing material data is the most efficient for MeshTV, and works as follows:

One zonal array, matlist, contains the material number for a clean zone or an index into the
mixed data arrays if the zone is mixed. Mixed zones are marked with negative entries in
matlist, so you must take ABS(matlist[i]) to get the actual 1-origin mixed data index. All
indices are 1-origin to allowmatlist to use zero as a material number.

The mixed data arrays are essentially a linked list of information about the mixed elements within
a zone. Each mixed data array is of length mixlen. For a given index i, the following information
is known about the i’th element:

mix_zone[i] The index of the zone which contains this element. The origin is determined by
DBOPT_ORIGIN.

mix_mat[i] The material number of this element

mix_vf[i] The volume fraction of this element

mix_next[i] The 1-origin index of the next material entry for this zone, else 0 if this is the
last entry.

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_CYCLE int Problem cycle value. 0

DBOPT_LABEL char * Character string defining the label associ-
ated with material data.

NULL

DBOPT_MAJORORDER int Indicator for row-major (0) or column-
major (1) storage for multidimensional
arrays.

0

DBOPT_ORIGIN int Origin for mix_zone. Zero or one. 0

DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

DBOPT_MATNAMES char** Array of strings defining the names of the
individual materials.

NULL

DBPutMaterial

Silo User’s Guide 2-77

.

Figure 2-1: Example using mixed data arrays for representing material information

1

1 1

1 2

2

2

2

Mesh ‘plot’
with material
numbers and

1

1

2

2-1

-3 Corresponding
matlist array

mix_zone

1:
2:
3:
4:

2
2
5
5

mix_mat

1:
2:
3:
4:

1
2
1
2

mix_vf

1:
2:
3:
4:

.4

.6

.7

.3

mix_next

1:
2:
3:
4:

2
0
4
0

interface

DBPutMatspecies

2-78 Silo User’s Guide

DBPutMatspecies—Write a material species data object into a Silo file.

Synopsis:

int DBPutMatspecies (DBfile *dbfile, char *name, char *matname,
int nmat, int nmatspec[], int speclist[],
int dims[], int ndims, int nspecies_mf,
float species_mf[], int mix_list[],
int mixlen, int datatype, DBoptlist *optlist)

Arguments:

dbfile Database file pointer.

name Name of the material species data object.

matname Name of the material object with which the material species object is
associated.

nmat Number of materials.

nmatspec Array of lengthnmat containing the number of material species associated
with each material.

speclist Array of dimension defined byndims anddims of indices into the
species_mf array. Each entry corresponds to one zone. If the zone is clean,
the entry in this array must be positive or zero. A positive value is a 1-origin
index to themassfractionsof thezone’smaterialspecies.A zerocanbeusedif
the material in this zone contains only one species. If the zone is mixed, this
value is ignored and the arraymix_list is used instead.

dims Array of lengthndims that defines the length of thespeclist array.

ndims Number of dimensions in thespeclist array.

nspecies_mf Number of material species mass fractions.

species_mf Array of lengthnspecies_mf containing mass fractions of the material
species.

mix_list Array of lengthmixlen containing indices into thespecies_mf array.
These are used for mixed zones. For every index j in this array,
mix_list[j] corresponds to theDBmaterial structure’s material
mix_mat[j] and zonemix_zone[j].

mixlen Length of themix_list array.

datatype Thedatatypeof themassfractiondatain species_mf. Oneof thepredefined
Silo data types.

optlist Pointer to an option list structure containing additional information to be
included in the object written into the Silo file. Use a NULL if there are no
options.

Returns:

DBPutMatspecies returns zero on success and -1 on failure.

DBPutMatspecies

Silo User’s Guide 2-79

Description:

The DBPutMatspecies function writes a material species data object into a Silo file. The minimum
required information for a material species data object is supplied via the standard arguments to
this function. The optlist argument must be used for supplying any information not requested
through the standard arguments.

Notes:

The following table describes the options accepted by this function:

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_MAJORORDER int Indicator for row-major (0) or column-
major (1) storage for multidimensional
arrays.

0

DBOPT_ORIGIN int Origin for arrays. Zero or one. 0

DBPutMultimat

2-80 Silo User’s Guide

DBPutMultimat—Write a multi-block material object into a Silo file.

Synopsis:

int DBPutMultimat (DBfile *dbfile, char *name, int nmat,
char *matnames[], DBoptlist *optlist)

Arguments:

dbfile Database file pointer.

name Name of the multi-material object.

nmat Number of materials provided.

matnames Array of lengthnmat containing pointers to the names of the materials to be
associated with the multi-material object.

optlist Pointer to an option list structure containing additional information to be
included in the object written into the Silo file. Use a NULL if there are no
options

Returns:

DBPutMultimat returns zero on success and -1 on error.

Description:

The DBPutMultimat function writes a multi-material object into a Silo file.

Notes:

The following table describes the options accepted by this function:

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_BLOCKORIGIN int The origin of the block numbers. 1

DBOPT_GROUPORIGIN int The origin of the group numbers. 1

DBOPT_NGROUPS int The total number of groups in this multi-
mat species object.

0

DBOPT_NMATNOS int Number of material numbers stored in the
DBOPT_MATNOS option.

0

DBOPT_MATNOS int * Pointer to an array of length
DBOPT_NMATNOS containing a complete
list of the material numbers used in the
Multimat object. DBOPT_NMATNOS must
be set for this to work correctly.

NULL

DBOPT_CYCLE int Problem cycle value. 0

DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

DBPutMultimatspecies

Silo User’s Guide 2-81

DBPutMultimatspecies—Write a multi-block species object into a Silo file.

Synopsis:

int DBPutMultimatspecies (DBfile *dbfile, char *name, int nspec,
char *specnames[], DBoptlist *optlist)

Arguments:

dbfile Database file pointer.

name Name of the multi-block species structure.

nspec Number of species objects provided.

specnames Array of lengthnspec containing pointers to the names of each of the species.

optlist Pointer to an option list structure containing additional information to be
included in the object written into the Silo file. Use a NULL if there are no
options.

Returns:

DBPutMultimatspecies returns zero on success and -1 on failure.

Description:

TheDBPutMultimatspeciesfunctionwritesamulti-blockmaterialspeciesobjectinto aSilo file. It
accepts as input descriptions of the various sub-species (blocks) which are part of this mesh.

Notes:

The following table describes the options accepted by this function:

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_BLOCKORIGIN int The origin of the block numbers. 1

DBOPT_GROUPORIGIN int The origin of the group numbers. 1

DBOPT_NGROUPS int The total number of groups in this multi-
mat species object.

0

DBOPT_MATNAME char * Character string defining the name of the
multi-block material with which this object
is associated.

NULL

DBOPT_NMAT int The number of materials in the associated
material object.

0

DBOPT_NMATSPEC int * Array of length DBOPT_NMAT containing
the number of material species associated
with each material. DBOPT_NMAT must be
set for this to work correctly.

NULL

DBOPT_CYCLE int Problem cycle value. 0

DBPutMultimatspecies

2-82 Silo User’s Guide

DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

Option Name
Value

Data Type Option Meaning Default Value

DBPutMultimesh

Silo User’s Guide 2-83

DBPutMultimesh—Write a multi-block mesh object into a Silo file.

Synopsis:

int DBPutMultimesh (DBfile *dbfile, char *name, int nmesh,
char *meshnames[],int meshtypes[],
DBoptlist *optlist)

Arguments:

dbfile Database file pointer.

name Name of the multi-block mesh structure.

nmesh Number of meshes provided.

meshnames Array of lengthnmesh containing pointers to the names of each of the meshes.

meshtypes Array of lengthnmesh containingthetypeof eachmesh.Oneof thepredefined
types:DB_QUAD_RECT, DB_QUAD_CURV, DB_UCDMESH, and
DB_POINTMESH.

optlist Pointer to an option list structure containing additional information to be
included in the object written into the Silo file. Use a NULL if there are no
options.

Returns:

DBPutMultimesh returns zero on success and -1 on failure.

Description:

TheDBPutMultimeshfunctionwritesamulti-blockmeshobjectinto aSilo file. It acceptsasinput
descriptions of the various sub-meshes (blocks) which are part of this mesh.

Notes:

The following table describes the options accepted by this function:

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_BLOCKORIGIN int The origin of the block numbers. 1

DBOPT_GROUPORIGIN int The origin of the group numbers. 1

DBOPT_NGROUPS int The total number of groups in this multi-
mesh object.

0

DBOPT_CYCLE int Problem cycle value. 0

DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

DBPutMultivar

2-84 Silo User’s Guide

DBPutMultivar—Write a multi-block variable object into a Silo file.

Synopsis:

int DBPutMultivar (DBfile *dbfile, char *name, int nvar,
char *varnames[], int vartypes[],
DBoptlist *optlist);

Arguments:

dbfile Database file pointer.

name Name of the multi-block variable.

nvar Number of variables associated with the multi-block variable.

varnames Array of lengthnvar containing pointers to the names of the variables. These
are variables written with DBPutPointvar, DBPutQuadvar, and DBPutUcdvar.

vartypes Array of lengthnvar containingthetypesof thevariables.Eachentrymustbe
one of the following: DB_POINTVAR, DB_QUADVAR, or DB_UCDVAR.

optlist Pointer to an option list structure containing additional information to be
included in the object written into the Silo file. Use a NULL if there are no
options.

Returns:

DBPutMultivar returns zero on success and -1 on failure.

Description:

The DBPutMultivar function writes a multi-block variable object into a Silo file.

Notes:

The following table describes the options accepted by this function:

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_BLOCKORIGIN int The origin of the block numbers. 1

DBOPT_GROUPORIGIN int The origin of the group numbers. 1

DBOPT_NGROUPS int The total number of groups in this multivar
object.

0

DBOPT_CYCLE int Problem cycle value. 0

DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

DBPutPointmesh

Silo User’s Guide 2-85

DBPutPointmesh—Write a point mesh object into a Silo file.

Synopsis:

int DBPutPointmesh (DBfile *dbfile, char *name, int ndims,
float *coords[], int nels, int datatype,
DBoptlist *optlist)

Arguments:

dbfile Database file pointer.

name Name of the mesh.

ndims Number of dimensions.

coords Array of lengthndims containing pointers to coordinate arrays.

nels Number of elements (points) in mesh.

datatype Datatype of the coordinate arrays. One of the predefined Silo data types.

optlist Pointer to an option list structure containing additional information to be
includedin themeshobjectwritten into theSilo file. Typically, thisargumentis
NULL.

Returns:

DBPutPointmesh returns zero on success and -1 on failure.

Description:

The DBPutPointmesh function accepts pointers to the coordinate arrays and is responsible for
writing the mesh into a point-mesh object in the Silo file.

A Silo point-mesh object contains all necessary information for describing a mesh. This includes
the coordinate arrays, the number of dimensions (1,2,3,...) and the number of points.

Notes:

The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” for details on the use of this construct.

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_GROUPNUM int The group number to which this point-
mesh belongs.

-1 (not in a group)

DBOPT_CYCLE int Problem cycle value. 0

DBOPT_XLABEL char * Character string defining the label associ-
ated with the X dimension.

NULL

DBOPT_YLABEL char * Character string defining the label associ-
ated with the Y dimension.

NULL

DBPutPointmesh

2-86 Silo User’s Guide

DBOPT_ZLABEL char * Character string defining the label associ-
ated with the Z dimension.

NULL

DBOPT_NSPACE int Number of spatial dimensions used by this
mesh.

ndims

DBOPT_ORIGIN int Origin for arrays. Zero or one. 0

DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

DBOPT_XUNITS char * Character string defining the units associ-
ated with the X dimension.

NULL

DBOPT_YUNITS char * Character string defining the units associ-
ated with the Y dimension.

NULL

DBOPT_ZUNITS char * Character string defining the units associ-
ated with the Z dimension.

NULL

Option Name
Value

Data Type Option Meaning Default Value

DBPutPointvar

Silo User’s Guide 2-87

DBPutPointvar—Write a vector/tensor point variable object into a Silo file.

Synopsis:

int DBPutPointvar (DBfile *dbfile, char *name, char *meshname,
int nvars, float *vars[], int nels,
int datatype, DBoptlist *optlist)

Arguments:

dbfile Database file pointer.

name Name of the variable set.

meshname Name of the associated point mesh.

nvars Number of variables supplied invars array.

vars Array of lengthnvars containing pointers to value arrays.

nels Number of elements (points) in variable.

datatype Datatype of the value arrays. One of the predefined Silo data types.

optlist Pointer to an option list structure containing additional information to be
includedin thevariableobjectwritten into theSilo file. Typically, thisargument
is NULL.

Returns:

DBPutPointvar returns zero on success and -1 on failure.

Description:

TheDBPutPointvar functionacceptspointersto thevaluearraysandis responsiblefor writing the
variables into a point-variable object in the Silo file.

A Silo point-variableobjectcontainsall necessaryinformationfor describingavariableassociated
with apointmesh.This includesthenumberof arrays,thedatatypeof thevariable,andthenumber
of points. This function should be used when writing vector or tensor quantities. Otherwise, it is
more convenient to use DBPutPointvar1.

Notes:

The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” for details on the use of this construct.

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_CYCLE int Problem cycle value. 0

DBOPT_NSPACE int Number of spatial dimensions used by this
mesh.

ndims

DBOPT_ORIGIN int Origin for arrays. Zero or one. 0

DBPutPointvar

2-88 Silo User’s Guide

DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

Option Name
Value

Data Type Option Meaning Default Value

DBPutPointvar1

Silo User’s Guide 2-89

DBPutPointvar1—Write a scalar point variable object into a Silo file.

Synopsis:

int DBPutPointvar1 (DBfile *dbfile, char *name, char *meshname,
float var[], int nels, int datatype,
DBoptlist *optlist)

Arguments:

dbfile Database file pointer.

name Name of the variable.

meshname Name of the associated point mesh.

var Array containing data values for this variable.

nels Number of elements (points) in variable.

datatype Datatype of the variable. One of the predefined Silo data types.

optlist Pointer to an option list structure containing additional information to be
includedin thevariableobjectwritten into theSilo file. Typically, thisargument
is NULL.

Returns:

DBPutPointvar1 returns zero on success and -1 on failure.

Description:

TheDBPutPointvar1functionacceptsavaluearrayandis responsiblefor writing thevariableinto
a point-variable object in the Silo file.

A Silo point-variableobjectcontainsall necessaryinformationfor describingavariableassociated
with apointmesh.This includesthenumberof arrays,thedatatypeof thevariable,andthenumber
of points. This function should be used when writing scalar quantities. To write vector or tensor
quantities, one must use DBPutPointvar.

Notes:

The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” for details on the use of this construct.

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_CYCLE int Problem cycle value. 0

DBOPT_NSPACE int Number of spatial dimensions used by this
mesh.

ndims

DBOPT_ORIGIN int Origin for arrays. Zero or one. 0

DBPutPointvar1

2-90 Silo User’s Guide

DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

Option Name
Value

Data Type Option Meaning Default Value

DBPutQuadmesh

Silo User’s Guide 2-91

DBPutQuadmesh—Write a quad mesh object into a Silo file.

Synopsis:

int DBPutQuadmesh (DBfile *dbfile, char *name, char *coordnames[],
float *coords[], int dims[], int ndims,
int datatype, int coordtype,
DBoptlist *optlist)

Arguments:

dbfile Database file pointer.

name Name of the mesh.

coordnames Array of lengthndims containing pointers to the names to be provided when
writing out the coordinate arrays.This parameter is currently ignored and can
be set as NULL.

coords Array of lengthndims containing pointers to the coordinate arrays.

dims Array of lengthndims describing the dimensionality of the mesh. Each value
in thedims array indicates the number of nodes contained in the mesh along
that dimension.

ndims Number of dimensions.

datatype Datatype of the coordinate arrays. One of the predefined Silo data types.

coordtype Coordinate array type. One of the predefined types: DB_COLLINEAR or
DB_NONCOLLINEAR. Collinear coordinate arrays are always one-
dimensional, regardless of the dimensionality of the mesh; non-collinear arrays
have the same dimensionality as the mesh.

optlist Pointer to an option list structure containing additional information to be
includedin themeshobjectwritten into theSilo file. Typically, thisargumentis
NULL.

Returns:

DBPutQuadmesh returns zero on success and -1 on failure.

Description:

The DBPutQuadmesh function accepts pointers to the coordinate arrays and is responsible for
writing the mesh into a quad-mesh object in the Silo file.

A Silo quad-mesh object contains all necessary information for describing a mesh. This includes
the coordinate arrays, the rank of the mesh (1,2,3,...) and the type (collinear or non-collinear). In
addition, other information is useful and is therefore optionally included (row-major indicator,
time and cycle of mesh, offsets to ‘real’ zones, plus coordinate system type.)

DBPutQuadmesh

2-92 Silo User’s Guide

Notes:

The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” for details on the use of this construct.

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_GROUPNUM int The group number to which this quad-
mesh belongs.

-1 (not in a group)

DBOPT_COORDSYS int Coordinate system. One of:
DB_CARTESIAN, DB_CYLINDRICAL,
DB_SPHERICAL, DB_NUMERICAL, or
DB_OTHER.

DB_OTHER

DBOPT_CYCLE int Problem cycle value. 0

DBOPT_FACETYPE int Zone face type. One of the predefined
types: DB_RECTILINEAR or
DB_CURVILINEAR.

DB_RECTILINEAR

DBOPT_HI_OFFSET int * Array of length ndims which defines zero-
origin offsets from the last node for the
ending index along each dimension.

{0,0,...}

DBOPT_LO_OFFSET int * Array of ndims which defines zero-origin
offsets from the first node for the starting
index along each dimension.

{0,0,...}

DBOPT_XLABEL char * Character string defining the label associ-
ated with the X dimension.

NULL

DBOPT_YLABEL char * Character string defining the label associ-
ated with the Y dimension.

NULL

DBOPT_ZLABEL char * Character string defining the label associ-
ated with the Z dimension.

NULL

DBOPT_MAJORORDER int Indicator for row-major (0) or column-
major (1) storage for multidimensional
arrays.

0

DBOPT_NSPACE int Number of spatial dimensions used by this
mesh.

ndims

DBOPT_ORIGIN int Origin for arrays. Zero or one. 0

DBOPT_PLANAR int Planar value. One of: DB_AREA or
DB_VOLUME.

DB_OTHER

DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

DBOPT_XUNITS char * Character string defining the units associ-
ated with the X dimension.

NULL

DBPutQuadmesh

Silo User’s Guide 2-93

The options DB_LO_OFFSET and DB_HI_OFFSET should be used if the mesh being described
uses the notion of “phoney” zones (i.e., some zones should be ignored.) For example, if a 2-D
mesh had designated the first column and row, and the last two columns and rows as “phoney”,
then we would use: lo_off = {1,1} and hi_off = {2,2}.

DBOPT_YUNITS char * Character string defining the units associ-
ated with the Y dimension.

NULL

DBOPT_ZUNITS char * Character string defining the units associ-
ated with the Z dimension.

NULL

Option Name
Value

Data Type Option Meaning Default Value

DBPutQuadvar

2-94 Silo User’s Guide

DBPutQuadvar—Write a vector/tensor quad variable object into a Silo file.

Synopsis:

int DBPutQuadvar (DBfile *dbfile, char *name, char *meshname,
int nvars, char *varnames[], float *vars[],
int dims[], int ndims, float *mixvars[],
int mixlen, int datatype, int centering,
DBoptlist *optlist)

Arguments:

dbfile Database file pointer.

name Name of the variable.

meshname Name of the mesh associated with this variable (written with DBPutQuadmesh
or DBPutUcdmesh).If noassociationis to bemade,thisvalueshouldbeNULL.

nvars Numberof sub-variableswhichcomprisethisvariable.For ascalararray, this is
one. If writing a vector quantity, however, this would be two for a 2-D vector
and three for a 3-D vector.

varnames Array of lengthnvars containing pointers to character strings defining the
names associated with each sub-variable.

vars Array of lengthnvars containing pointers to arrays defining the values
associated with each subvariable

dims Array of lengthndims which describes the dimensionality of the variable.
Eachvaluein thedims arrayindicatesthenumberof elementscontainedin the
variable along that dimension.

ndims Number of dimensions.

mixvars Array of lengthnvars containing pointers to arrays defining the mixed-data
values associated with each subvariable. If no mixed values are present, this
should be NULL.

mixlen Length of mixed data arrays, if provided.

datatype Datatype of the variable. One of the predefined Silo data types.

centering Centering of the sub-variables on the associated mesh. One of the predefined
types: DB_NODECENT or DB_ZONECENT.

optlist Pointer to an option list structure containing additional information to be
includedin thevariableobjectwritten into theSilo file. Typically, thisargument
is NULL.

Returns:

DBPutQuadvar returns zero on success and -1 on failure.

Description:

The DBPutQuadvar function writes a variable associated with a quad mesh into a Silo file. Note
that variables will be either node-centered or zone-centered. A quad-var object contains the vari-

DBPutQuadvar

Silo User’s Guide 2-95

able values. Other information can also be included. This function is useful for writing vector and
tensor fields, whereas the companion function, DBPutQuadvar1, is appropriate for writing scalar
fields.

Notes:

The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” for details on the use of this construct.

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_COORDSYS int Coordinate system. One of:
DB_CARTESIAN, DB_CYLINDRICAL,
DB_SPHERICAL, DB_NUMERICAL, or
DB_OTHER.

DB_OTHER

DBOPT_CYCLE int Problem cycle value. 0

DBOPT_FACETYPE int Zone face type. One of the predefined
types: DB_RECTILINEAR or
DB_CURVILINEAR.

DB_RECTILINEAR

DBOPT_LABEL char * Character string defining the label associ-
ated with this variable.

NULL

DBOPT_MAJORORDER int Indicator for row-major (0) or column-
major (1) storage for multidimensional
arrays.

0

DBOPT_ORIGIN int Origin for arrays. Zero or one. 0

DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

DBOPT_UNITS char * Character string defining the units associ-
ated with this variable.

NULL

DBOPT_USESPECMF int Boolean (DB_OFF or DB_ON) value
specifying whether or not to weight the
variable by the species mass fraction
when using material species data.

DB_OFF

DBPutQuadvar1

2-96 Silo User’s Guide

DBPutQuadvar1— Write a scalar quad variable object into a Silo file.

Synopsis:

int DBPutQuadvar1 (DBfile *dbfile, char *name, char *meshname,
float *var, int dims[], int ndims,
float *mixvar, int mixlen, int datatype,
int centering, DBoptlist *optlist)

Arguments:

dbfile Database file pointer.

name Name of the variable.

meshname Name of the mesh associated with this variable (written with DBPutQuadmesh
or DBPutUcdmesh.)If noassociationis to bemade,thisvalueshouldbeNULL.

var Array defining the values associated with this variable.

dims Array of lengthndims which describes the dimensionality of the variable.
Eachvaluein thedims arrayindicatesthenumberof elementscontainedin the
variable along that dimension.

ndims Number of dimensions.

mixvar Array defining the mixed-data values associated with this variable. If no mixed
values are present, this should be NULL.

mixlen Length of mixed data arrays, if provided.

datatype Datatype of sub-variables. One of the predefined Silo data types.

centering Centering of the sub-variables on the associated mesh. One of the predefined
types: DB_NODECENT or DB_ZONECENT.

optlist Pointer to an option list structure containing additional information to be
includedin thevariableobjectwritten into theSilo file. Typically, thisargument
is NULL.

Returns:

DBPutQuadvar1 returns zero on success and -1 on failure.

Description:

TheDBPutQuadvar1functionwritesascalarvariableassociatedwith aquadmeshinto aSilo file.
Note that variables will be either node-centered or zone-centered. A quad-var object contains the
variable values, plus the name of the associated quad-mesh. Other information can also be
included. This function should be used for writing scalar fields, and its companion function,
DBPutQuadvar, should be used for writing vector and tensor fields.

DBPutQuadvar1

Silo User’s Guide 2-97

Notes:

The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” for details on the use of this construct.

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_COORDSYS int Coordinate system. One of:
DB_CARTESIAN, DB_CYLINDRICAL,
DB_SPHERICAL, DB_NUMERICAL, or
DB_OTHER.

DB_OTHER

DBOPT_CYCLE int Problem cycle value. 0

DBOPT_FACETYPE int Zone face type. One of the predefined
types: DB_RECTILINEAR or
DB_CURVILINEAR.

DB_RECTILINEAR

DBOPT_LABEL char * Character string defining the label associ-
ated with this variable.

NULL

DBOPT_MAJORORDER int Indicator for row-major (0) or column-
major (1) storage for multidimensional
arrays.

0

DBOPT_ORIGIN int Origin for arrays. Zero or one. 0

DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

DBOPT_UNITS char * Character string defining the units associ-
ated with this variable.

NULL

DBOPT_USESPECMF int Boolean (DB_OFF or DB_ON) value
specifying whether or not to weight the
variable by the species mass fraction
when using material species data.

DB_OFF

DBPutUcdmesh

2-98 Silo User’s Guide

DBPutUcdmesh—Write a UCD mesh object into a Silo file.

Synopsis:

int DBPutUcdmesh (DBfile *dbfile, char *name, int ndims,
char *coordnames[], float *coords[],
int nnodes, int nzones,
char *zonel_name, char *facel_name,
int datatype, DBoptlist *optlist)

Arguments:

dbfile Database file pointer.

name Name of the mesh.

ndims Number of spatial dimensions represented by this UCD mesh.

coordnames Array of lengthndims containing pointers to the names to be provided when
writing out the coordinate arrays.This parameter is currently ignored and can
be set as NULL.

coords Array of lengthndims containing pointers to the coordinate arrays.

nnodes Number of nodes in this UCD mesh.

nzones Number of zones in this UCD mesh.

zonel_name Name of the zonelist structure associated with this variable [written with
DBPutZonelist]. If no association is to be made, this value should be NULL.

facel_name Name of the facelist structure associated with this variable [written with
DBPutFacelist]. If no association is to be made, this value should be NULL.

datatype Datatype of the coordinate arrays. One of the predefined Silo data types.

optlist Pointer to an option list structure containing additional information to be
includedin themeshobjectwritten into theSilo file. Seethetablebelow for the
valid options for this function. If no options are to be provided, use NULL for
this argument.

Returns:

DBPutUcdmesh returns zero on success and -1 on failure.

Description:

The DBPutUcdmesh function accepts pointers to the coordinate arrays and is responsible for writ-
ing the mesh into a UCD mesh object in the Silo file.

A Silo UCD mesh object contains all necessary information for describing a mesh. This includes
the coordinate arrays, the rank of the mesh (1,2,3,...) and the type (collinear or non-collinear.) In
addition, other information is useful and is therefore included (time and cycle of mesh, plus coor-
dinate system type).

DBPutUcdmesh

Silo User’s Guide 2-99

Notes:

See the description of “DBCalcExternalFacelist” on page 2-16 or “DBCalcExternalFacelist2” on
page 2-17 for an automated way of computing the facelist needed for this call.

Figure 2-2: Example usage of UCD zonelist and external facelist variables.

1 2 3

4 5 6

7 8 9

10 11 12

nnodes = 13
nzones = 3
nzshapes = 2
lznodelist = 2*8 + 1*5 = 21 zone nodes
nfaces = 13 external faces
nfshapes = 2 external face shapes
nftypes = 0
lfnodelist = 9*4 + 4*3 = 48 external face nodes

fnodelist = { 1,2,8,7 external face nodelist
2,3,9,8,
8,9,12,11,
5,6,12,11,...}

fshapesize = {4,3} external face shape sizes
fshapecnt = {9,4} external face shape counts

znodelist = { 1,4,5,2,7,10,11,8, zone nodelist
2,5,6,3,8,11,12,9,

zshapesize = {8,5} zone shape sizes
zshapecnt = {2,1} zone shape counts

x = {0,1,2,0,1,2,0,1,2,0,1,2,3}
y = {1,1,1,0,0,0,1,1,1,0,0,0,.5}

X

Y

Z

z = {1,1,1,1,1,1,0,0,0,0,0,0,.5}

fzoneno = {1,2,2,2,...}external face zone nos

13

13,3,6,12,9}

DBPutUcdmesh

2-100 Silo User’s Guide

The order in which nodes are defined in the zonelist is important, especially for 3D cells. Nodes
defining a 2D cell should be supplied in either clockwise or counterclockwise order around the
cell. The node ordering for the predefined 3D cell types is illustrated below.

Figure 2-3: Node ordering for UCD zone shapes.

The nodes of a polyhedron are specified in the following fashion: First specify the number of faces
in the polyhedron. Then, for each face, specify the number of nodes in the face followed by the
nodes that make up the face. The nodes should be ordered such that they are numbered in a
counter-clockwise fashion when viewed from the outside.

0

4
7

4

1 3

3

6

2 2

0

5

3

1

4

5

2 3

1

2

10

0

Tetrahedron Pyramid

Prism Hexahedron

DBPutUcdmesh

Silo User’s Guide 2-101

Figure 2-4: Example usage of UCD zonelist combining a hex and 2 polyhedra.

1 2 3

4 5 6

7 8 9

10 11 12

nzones = 3
nzshapes = 2
lznodelist = 8 + 1 + 6 * 5 + 1 + 5 + 4 * 4 = 61
znodelist = {1,4,5,2,7,10,11,8,

X

Y

Z

13

6,
4,11,12,9,8,
4,12,6,3,9,
4,6,5,2,3,
4,5,11,8,2,
4,5,6,12,11,
4,3,2,8,9,
5,
4,3,6,12,9,
3,6,13,12,
3,12,13,9,
3,9,13,3,
3,3,13,6}

zshapetype = {DB_ZONETYPE_HEX,
DB_ZONETYPE_POLYHEDRON}

zshapesize = {8, 53}
zshapecnt = {1, 2}

DBPutUcdmesh

2-102 Silo User’s Guide

The following table describes the options accepted by this function:

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_GROUPNUM int The group number to which this UCD-
mesh belongs.

-1 (not in a group)

DBOPT_COORDSYS int Coordinate system. One of:
DB_CARTESIAN, DB_CYLINDRICAL,
DB_SPHERICAL, DB_NUMERICAL, or
DB_OTHER.

DB_OTHER

DBOPT_NODENUM int* An array of length nnodes giving a global
node number for each node in the mesh.

NULL

DBOPT_CYCLE int Problem cycle value 0

DBOPT_FACETYPE int Zone face type. One of the predefined
types: DB_RECTILINEAR or
DB_CURVILINEAR.

DB_RECTILINEAR

DBOPT_XLABEL char * Character string defining the label associ-
ated with the X dimension.

NULL

DBOPT_YLABEL char * Character string defining the label associ-
ated with the Y dimension.

NULL

DBOPT_ZLABEL char * Character string defining the label associ-
ated with the Z dimension.

NULL

DBOPT_NSPACE int Number of spatial dimensions used by this
mesh.

ndims

DBOPT_ORIGIN int Origin for arrays. Zero or one. 0

DBOPT_PLANAR int Planar value. One of: DB_AREA or
DB_VOLUME.

DB_NONE

DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

DBOPT_XUNITS char * Character string defining the units associ-
ated with the X dimension.

NULL

DBOPT_YUNITS char * Character string defining the units associ-
ated with the Y dimension.

NULL

DBOPT_ZUNITS char * Character string defining the units associ-
ated with the Z dimension.

NULL

DBPutUcdvar

Silo User’s Guide 2-103

DBPutUcdvar—Write a vector/tensor UCD variable object into a Silo file.

Synopsis:

int DBPutUcdvar (DBfile *dbfile, char *name, char *meshname,
int nvars, char *varnames[], float *vars[],
int nels, float *mixvars[], int mixlen,
int datatype, int centering,
DBoptlist *optlist)

Arguments:

dbfile Database file pointer.

name Name of the variable.

meshname Name of the mesh associated with this variable (written with DBPutUcdmesh).

nvars Numberof sub-variableswhichcomprisethisvariable.For ascalararray, this is
one. If writing a vector quantity, however, this would be two for a 2-D vector
and three for a 3-D vector.

varnames Array of lengthnvars containing pointers to character strings defining the
names associated with each subvariable.

vars Array of lengthnvars containing pointers to arrays defining the values
associated with each subvariable.

nels Number of elements in this variable.

mixvars Array of lengthnvars containing pointers to arrays defining the mixed-data
values associated with each subvariable. If no mixed values are present, this
should be NULL.

mixlen Length of mixed data arrays (i.e.,mixvars).

datatype Datatype of sub-variables. One of the predefined Silo data types.

centering Centering of the sub-variables on the associated mesh. One of the predefined
types: DB_NODECENT or DB_ZONECENT.

optlist Pointer to an option list structure containing additional information to be
included in the variable object written into the Silo file. See the table below for
the valid options for this function. If no options are to be provided, use NULL
for this argument.

Returns:

DBPutUcdvar returns zero on success and -1 on failure.

Description:

The DBPutUcdvar function writes a variable associated with an UCD mesh into a Silo file. Note
that variables will be either node-centered or zone-centered. Other information can also be
included.This functionis usefulfor writing vectorandtensorfields,whereasthecompanionfunc-
tion, DBPutUcdvar1, is appropriate for writing scalar fields.

DBPutUcdvar

2-104 Silo User’s Guide

Notes:

The following table describes the options accepted by this function:

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_COORDSYS int Coordinate system. One of:
DB_CARTESIAN, DB_CYLINDRICAL,
DB_SPHERICAL, DB_NUMERICAL, or
DB_OTHER.

DB_OTHER

DBOPT_CYCLE int Problem cycle value. 0

DBOPT_LABEL char * Character strings defining the label asso-
ciated with this variable.

NULL

DBOPT_ORIGIN int Origin for arrays. Zero or one. 0

DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

DBOPT_UNITS char * Character string defining the units associ-
ated with this variable.

NULL

DBOPT_USESPECMF int Boolean (DB_OFF or DB_ON) value
specifying whether or not to weight the
variable by the species mass fraction
when using material species data.

DB_OFF

DBPutUcdvar1

Silo User’s Guide 2-105

DBPutUcdvar1—Write a scalar UCD variable object into a Silo file.

Synopsis:

int DBPutUcdvar1 (DBfile *dbfile, char *name, char *meshname,
float *var, int nels, float *mixvar,
int mixlen, int datatype, int centering,
DBoptlist *optlist)

Arguments:

dbfile Database file pointer.

name Name of the variable.

meshname Name of the mesh associated with this variable (written with either
DBPutUcdmesh).

var Array of lengthnels containing the values associated with this variable.

nels Number of elements in this variable.

mixvar Array of lengthmixlen containing the mixed-data values associated with this
variable. Ifmixlen is zero, this value is ignored.

mixlen Length of mixvar array. If zero, no mixed data is present.

datatype Datatype of variable. One of the predefined Silo data types.

centering Centering of the sub-variables on the associated mesh. One of the predefined
types: DB_NODECENT or DB_ZONECENT.

optlist Pointer to an option list structure containing additional information to be
included in the variable object written into the Silo file. See the table below for
the valid options for this function. If no options are to be provided, use NULL
for this argument.

Returns:

DBPutUcdvar1 returns zero on success and -1 on failure.

Description:

DBPutUcdvar1writesavariableassociatedwith anUCD meshinto aSilo file. Notethatvariables
will be either node-centered or zone-centered. Other information can also be included. This func-
tion is usefulfor writing scalarfields,whereasthecompanionfunction,DBPutUcdvar, is appropri-
ate for writing vector and tensor fields.

DBPutUcdvar1

2-106 Silo User’s Guide

Notes:

The following table describes the options accepted by this function:

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_COORDSYS int Coordinate system. One of:
DB_CARTESIAN, DB_CYLINDRICAL,
DB_SPHERICAL, DB_NUMERICAL, or
DB_OTHER.

DB_OTHER

DBOPT_CYCLE int Problem cycle value. 0

DBOPT_LABEL char * Character strings defining the label asso-
ciated with this variable.

NULL

DBOPT_ORIGIN int Origin for arrays. Zero or one. 0

DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

DBOPT_UNITS char * Character string defining the units associ-
ated with this variable.

NULL

DBOPT_USESPECMF int Boolean (DB_OFF or DB_ON) value
specifying whether or not to weight the
variable by the species mass fraction
when using material species data.

DB_OFF

DBPutZonelist

Silo User’s Guide 2-107

DBPutZonelist—Write a zonelist object into a Silo file.

Synopsis:

int DBPutZonelist (DBfile *dbfile, char *name, int nzones,
int ndims, int nodelist[], int lnodelist,
int origin, int shapesize[], int shapecnt[],
int nshapes)

Arguments:

dbfile Database file pointer.

name Name of the zonelist structure.

nzones Number of zones in associated mesh.

ndims Number of spatial dimensions represented by associated mesh.

nodelist Array of lengthlnodelist containing node indices describing mesh zones.

lnodelist Length of nodelist array.

origin Origin for indices in the nodelist array. Should be zero or one.

shapesize Array of lengthnshapes containing the number of nodes used by each zone
shape.

shapecnt Array of lengthnshapes containing the number of zones having each shape.

nshapes Number of zone shapes.

Returns:

DBPutZonelist returns zero on success or -1 on failure.

Description:

The DBPutZonelist function writes a zonelist object into a Silo file. The name assigned to this
object can in turn be used as thezonel_name parameter to the DBPutUcdmesh function.

Notes:

See the write-up of DBPutUcdmesh for a full description of the zonelist data structures.

DBPutZonelist2

2-108 Silo User’s Guide

DBPutZonelist2—Write a zonelist object containing ghost zones into a Silo file.

Synopsis:

int DBPutZonelist2 (DBfile *dbfile, char *name, int nzones,
int ndims, int nodelist[], int lnodelist,
int origin, int lo_offset, int hi_offset,
int shapetype[], int shapesize[],
int shapecnt[], int nshapes,
DBoptlist *optlist)

Arguments:

dbfile Database file pointer.

name Name of the zonelist structure.

nzones Number of zones in associated mesh.

ndims Number of spatial dimensions represented by associated mesh.

nodelist Array of lengthlnodelist containing node indices describing mesh zones.

lnodelist Length of nodelist array.

origin Origin for indices in the nodelist array. Should be zero or one.

lo_offset The number of ghost zones at the beginning of thenodelist.

hi_offset The number of ghost zones at the end of thenodelist.

shapetype Array of lengthnshapes containing the type of each zone shape. See
description below.

shapesize Array of lengthnshapes containing the number of nodes used by each zone
shape.

shapecnt Array of lengthnshapes containing the number of zones having each shape.

nshapes Number of zone shapes.

optlist Pointer to an option list structure containing additional information to be
included in the variable object written into the Silo file. See the table below for
the valid options for this function. If no options are to be provided, use NULL
for this argument.

Returns:

DBPutZonelist2 returns zero on success or -1 on failure.

Description:

The DBPutZonelist2 function writes a zonelist object into a Silo file. The name assigned to this
object can in turn be used as thezonel_name parameter to the DBPutUcdmesh function.

DBPutZonelist2

Silo User’s Guide 2-109

The allowed shape types are described in the following table:

Notes:

The following table describes the options accepted by this function:

For a description of how the nodes for the allowed shapes are enumerated, see “DBPutUcdmesh”
on page 2-98

Type Description

DB_ZONETYPE_BEAM A line segment

DB_ZONETYPE_POLYGON A polygon where nodes are enumerated to form a polygon

DB_ZONETYPE_TRIANGLE A triangle

DB_ZONETYPE_QUAD A quadrilateral

DB_ZONETYPE_POLYHEDRON A polyhedron with nodes enumerated to form faces and
faces are enumerated to form a polyhedron

DB_ZONETYPE_TET A tetrahedron

DB_ZONETYPE_PYRAMID A pyramid

DB_ZONETYPE_PRISM A prism

DB_ZONETYPE_HEX A hexahedron

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_ZONENUM int* Array of global zone numbers, one per
zone in this zonelist.

NULL

DBReadAtt

2-110 Silo User’s Guide

DBReadAtt—Read an attribute value.

Synopsis:

int DBReadAtt (DBfile *dbfile, char *varname, char *attname,
void *results)

Arguments:

dbfile Database file pointer.

varname Name of the variable to which the attribute belongs.

attname Name of the attribute.

results Pointer to memory where attribute value should be stored.

Returns:

DBReadAtt returns zero on success, and -1 on failure.

Description:

The DBReadAtt function reads the given attribute value into the provided space.

Notes:

See DBGetAtt for a memory-allocating version of this function.

DBReadVar

Silo User’s Guide 2-111

DBReadVar—Read a simple Silo variable.

Synopsis:

int DBReadVar (DBfile *dbfile, char *varname, void *result)

Arguments:

dbfile Database file pointer.

varname Name of the simple variable.

result Pointer to memory into which the variable should be read. It is up to the
application to provide sufficient space in which to read the variable.

Returns:

DBReadVar returns zero on success and -1 on failure.

Description:

The DBReadVar function reads a simple variable into the given space.

Notes:

See DBGetVar for a memory-allocating version of this function.

DBReadVar1

2-112 Silo User’s Guide

DBReadVar1—Read one element from a simple variable.

Synopsis:

int DBReadVar1 (DBfile *dbfile, char *varname, int offset,
void *result)

Arguments:

dbfile Database file pointer.

varname Name of the simple variable.

offset Offset of one element to read.

result Pointer to memory in which the element should be read. It is up to the
application to provide sufficient space in which to read the element.

Returns:

DBReadVar1 returns zero on success and -1 on failure.

Description:

The DBReadVar1 function reads one element from a simple variable into the provided space.

DBReadVarSlice

Silo User’s Guide 2-113

DBReadVarSlice—Read a (hyper)slab of data from a simple variable.

Synopsis:

int DBReadVarSlice (DBfile *dbfile, char *varname, int *offset,
int *length, int *stride, int ndims,
void *result)

Arguments:

dbfile Database file pointer.

varname Name of the simple variable.

offset Array of lengthndims of offsets in each dimension of the variable. This is the
0-origin position from which to begin reading the slice.

length Array of lengthndims of lengths of data in each dimension to read from the
variable. All lengths must be positive.

stride Array of lengthndims of stride steps in each dimension. If no striding is
desired, zeroes should be passed in this array.

ndims Number of dimensions in the variable.

result Pointer to location where the slice is to be written. It is up to the application to
provide sufficient space in which to read the variable.

Returns:

DBReadVarSlice returns zero on success and -1 on failure.

Description:

TheDBReadVarSlicefunctionreadsaslabof datafrom asimplevariableinto a locationprovided
in theresult pointer. Any hyperslab of data may be read.

Note that the minimumlength value is 1 and the minimumstride value is one.

A one-dimensional array slice:

Figure 2-5: Array slice

Offset = 5 Length = 12

Stride = 1

Offset = 5 Length = 12

Stride = 2

DBSetDataReadMask

2-114 Silo User’s Guide

DBSetDataReadMask—Set the data read mask

Synopsis:

long DBSetDataReadMask (long mask)

Arguments:

mask The mask to use to read data. This is a bit vector of values that define whether
each data portion of the various Silo objects should be read.

Returns:

DBSetDataReadMask returns the previous data read mask.

Description:

The DBSetDataReadMask allows the user to set the mask that’s used to read the data within Silo
objects.

Most Silo objects have a metadata portion and a data portion. The data portion is that part of the
object that consists of pointers to long arrays of data. These arrays are “problem sized”.

Setting the data read mask allows for a DBGet* call to only return part of the data. With the data
read mask set to DBAll, the DBGet* functions return all of the information. With the data read
masksetto DBNone,they returnonly themetadata.Themaskis abit vectorspecifyingwhichpart
of the data model should be read.

A special case is found in the DBCalc flag. Sometimes data is not stored in the file, but is instead
calculated from other information. The DBCalc flag controls this behavior. If it is turned off, the
data is not calculated. If it is turned on, the data is calculated.

ThevaluesthatDBSetDataReadMasktakesasthemask parameterarebinary-or’edcombinations
of the values shown in the following table:

Mask bit Meaning

DBAll All data values are read. This value is identical to specifying all of the
other mask bits or’ed together, setting all of the bit values to 1.

DBNone No data values are read. This value sets all of the bit values to 0.

DBCalc If data is calculable, calculate it. Otherwise, return NULL for that infor-
mation.

DBMatMatnos The lists of material numbers in material objects are read by the DBGet-
Material call.

DBMatMatnames The arrays of material names in material objects are read byt the
DBGetMaterial call.

DBMatMatlist The lists of the correspondence between zones and material numbers in
material objects are read by the DBGetMaterial call.

DBMatMixList The lists of mixed material information in material objects are read by
the DBGetMaterial call.

DBSetDataReadMask

Silo User’s Guide 2-115

Use the DBGetDataReadMask call to retrieve the current data read mask without setting one.

Note: The data read mask is currently recognized only by the following drivers: PDB, Taurus.

DBCurveArrays The data values of curves are read by the DBGetCurve call.

DBPMCoords The coordinate values of pointmeshes are read by the DBGetPointmesh
call.

DBPVData The data values of pointvars are read by the DBGetPointvar call.

DBQMCoords The coordinate values of quadmeshes are read by the DBGetQuad-
mesh call.

DBQVData The data values of quadvars are read by the DBGetQuadvar call.

DBUMCoords The coordinate values of UCD meshes are read by the DBGetUcdmesh
call.

DBUMFacelist The facelists of UCD meshes are read by the DBGetUcdmesh call.

DBUMZonelist The zonelists of UCD meshes are read by the DBGetUcdmesh call.

DBUVData The data values of UCD variables are read by the DBGetUcdvar call.

DBFacelistInfo The nodelists and shape information in facelists are read by the DBGet-
Facelist call.

DBZonelistInfo The nodelist and shape information in zonelists are read by the DBGet-
Zonelist call.

Mask bit Meaning

DBSetDir

2-116 Silo User’s Guide

DBSetDir—Set the current directory within the Silo database.

Synopsis:

int DBSetDir (DBfile *dbfile, char *pathname)

Arguments:

dbfile Database file pointer.

pathname Path name of the directory. This can be either an absolute or relative path name.

Returns:

DBSetDir returns zero on success and -1 on failure.

Description:

The DBSetDir function sets the current directory within the given Silo database. Also, calls to
DBSetDirwill freetheDBtocstructure,invalidatingthepointerreturnedpreviouslyby DBGetToc.
DBGetTocmustbecalledagain in orderto obtainapointerto thenew directory’sDBtocstructure.

DBShowErrors

Silo User’s Guide 2-117

DBShowErrors—Set the error reporting mode.

Synopsis:

void DBShowErrors (int level, void (*func)(char*))

Arguments:

level Error reporting level. One of DB_ALL, DB_ABORT, DB_TOP, or DB_NONE.

func Function pointer to an error-handling function.

Returns:

DBShowErrors returns nothing (void). It cannot fail.

Description:

The DBShowErrors function sets the level of error reporting done by Silo when it encounters an
error. The following table describes the action taken upon error for different values oflevel:

For more information, see “Error Handling” on page2-1.

Error level value Error action

DB_ALL Show all errors, beginning with the (possibly internal) routine
that first detected the error and continuing up the call stack
to the application.

DB_ABORT Same as DB_ALL except abort is called after the error mes-
sage is printed.

DB_TOP (Default) Only the top-level Silo functions issue error mes-
sages.

DB_NONE The library does not handle error messages. The application
is responsible for checking the return values of the Silo func-
tions and handling the error.

DBWrite

2-118 Silo User’s Guide

DBVersion—Get the version of the Silo library.

Synopsis:

char *DBVersion (void)

Returns:

DBVersion returns the version as a character string.

Description:

TheDBVersionfunctiondetermineswhatversionof theSilo library is beingusedandreturnsthat
version in string form.

DBWrite

Silo User’s Guide 2-119

DBWrite—Write a simple variable.

Synopsis:

int DBWrite (DBfile *dbfile, char *varname, void *var, int *dims,
int ndims, int datatype)

Arguments:

dbfile Database file pointer.

varname Name of the simple variable.

var Array defining the values associated with the variable.

dims Array of lengthndims which describes the dimensionality of the variable.
Eachvaluein thedims arrayindicatesthenumberof elementscontainedin the
variable along that dimension.

ndims Number of dimensions.

datatype Datatype of the variable. One of the predefined Silo data types.

Returns:

DBWrite returns zero on success and -1 on failure.

Description:

The DBWrite function writes a simple variable into a Silo file.

DBWriteComponent

2-120 Silo User’s Guide

DBWriteComponent—Add a variable component to an object and write the associated
data.

Synopsis:

int DBWriteComponent (DBfile *dbfile, DBobject *object,
char *compname, char *prefix, char *datatype,
void *var, int nd, long *count)

Arguments:

dbfile Database file pointer.

object Pointer to the object.

compname Component name.

prefix Path name prefix of the object.

datatype Data type of the component’s data. One of: “short”, “integer”, “long”, “float”,
“double”, “char”.

var Pointer to the component’s data.

nd Number of dimensions of the component.

count An array of lengthnd containing the length of the component in each of its
dimensions.

Returns:

DBWriteComponent returns zero on success and -1 on failure.

Description:

TheDBWriteComponentfunctionaddsacomponentto anexistingobjectandalsowritesthecom-
ponent’s data to a Silo file.

DBWriteObject

Silo User’s Guide 2-121

DBWriteObject—Write an object into a Silo file.

Synopsis:

int DBWriteObject (DBfile *dbfile, DBobject *object, int freemem)

Arguments:

dbfile Database file pointer.

object Objectcreatedwith DBMakeObjectandpopulatedwith DBAddFltComponent,
DBAddIntComponent, DBAddStrComponent, and DBAddVarComponent.

freemem If non-zero, then the object will be freed after writing.

Returns:

DBWriteObject returns zero on success and -1 on failure.

Description:

The DBWriteObject function writes an object into a Silo file. This is a user-defined object that
consists of various components. They are used when the basic Silo structures are not sufficient.

DBWriteSlice

2-122 Silo User’s Guide

DBWriteSlice—Write a (hyper)slab of a simple variable

Synopsis:

int DBWriteSlice (DBfile *dbfile, char *varname, void *var,
int datatype, int *offset, int *length,
int *stride, int *dims, int ndims)

Arguments:

dbfile Database file pointer.

varname Name of the simple variable.

var Array defining the values associated with the slab.

datatype Datatype of the variable. One of the predefined Silo data types.

offset Array of lengthndims of offsets in each dimension of the variable. This is the
0-origin position from which to begin writing the slice.

length Array of lengthndims of lengths of data in each dimension to write to the
variable. All lengths must be positive.

stride Array of lengthndims of stride steps in each dimension. If no striding is
desired, zeroes should be passed in this array.

dims Array of lengthndims which describes the dimensionality of the entire
variable. Each value in thedims array indicates the number of elements
contained in the entire variable along that dimension.

ndims Number of dimensions.

Returns:

DBWriteSlice returns zero on success and -1 on failure.

Description:

TheDBWriteSlicefunctionwritesaslabof datato asimplevariablefrom thedataprovidedin the
var pointer. Any hyperslab of data may be written.

The size of the entire variable (after all slabs have been written) must be known when the
DBWriteSlice function is called. The data in thevar parameter is written into the entire variable
using the location specified in theoffset, length, andstride parameters. The data that
makes up the entire variable may be written with one or more calls to DBWriteSlice.

The minimumlength value is 1 and the minimumstride value is one.

DBWriteSlice

Silo User’s Guide 2-123

A one-dimensional array slice:

Figure 2-6: Array slice

Offset = 5 Length = 12

Stride = 1

Offset = 5 Length = 12

Stride = 2

DBWriteSlice

2-124 Silo User’s Guide

Silo User’s Guide 3-1

Chapter 3 Fortran Functions

3.1. Fortran Interface

The following section contains the Fortran function descriptions for the Silo
input and output packages. The interface supports both quadrilateral and
UCD-based data. Currently, C-callable functions exist for all routines, but
Fortran-callable functions exist for only a portion of the routines. The func-
tions are arranged in alphabetical order.

3.1.1. Error Handling

Silo has an error-reporting function dbshowerrors that allows the program-
mer to tailor the reporting of errors. This function takes as its argument an
error level, which is one of the following values:

3.1.2. Optional Arguments

The functions described below have optional arguments. By optional, it is
meant that a dummy value can be supplied instead of an actual value. An

Error level value Error action

DB_ALL Show all errors, beginning with the (possibly internal) routine
that first detected the error and continuing up the call stack
to the application.

DB_ABORT Same as DB_ALL except abort() is called after the error
message is printed.

DB_TOP (Default) Only the top-level Silo functions issue error mes-
sages.

DB_NONE The library does not handle error messages. The application
is responsible for checking the return values of the Silo func-
tions and handling the error.

3-2 Silo User’s Guide

argument to a Fortran function, which the user does not want to provide,
and which is documented as optional, should be replaced with the parame-
ter DB_F77NULL, which is defined in the file silo.inc.

3.1.3. Using the Silo Option Parameter

Many of the functions take as one of their arguments a list of option-name/
option-value pairs. In this way, additional information can be passed to a
function without having to change the function’s interface. The following
sequence of function declarations outlines the procedure for creating and
populating such a list:

integer function dbmkoptlist(! Create a list:
maxopts, ! maximum list length
optlist_id ! list identifier
)

integer function dbaddiopt (! Add an integer option
! to the list:

optlist_id, ! the list
option_id, ! the option
int_value ! the option’s integer

! value
)

There also are functions for adding real and character option values to a list.

3.1.4. Fortran Calling Sequence

The functions in the Silo output package should be called in a particular
order. Start by creating a Silo file, with dbcreate(), create any necessary
directories, then call the remaining routines as needed for writing out the
mesh, material data, and any physics variables associated with the mesh.

Schematically, your program should look something like this:

dbcreate

dbmkdir
dbsetdir

dbputqm
dbputqv1
dbputqv1
dbputqv1
. . .

dbsetdir

dbmkdir
dbsetdir

dbputzl
dbputfl
dbputum
dbputmat

Silo User’s Guide 3-3

dbputuv1
. . .
dbsetdir

dbclose

3-4 Silo User’s Guide

Table 3-1. Fortran Interface Functions and C Equivalents

Fortran Functions C Equivalent Fortran Functions C Equivalent

dbadd*opt DBAddOption dbputmmat DBPutMultimat

dbcalcfl DBCalcExternalFacelist dbputmmesh DBPutMultimesh

dbclose DBClose dbputmsp DBPutMatspecies

dbcreate DBCreate dbputmvar DBPutMultivar

dbfgetca — dbputpm DBPutPointmesh

dbfreeoptlist DBFreeOptlist dbputpv1 DBPutPointvar1

dbgetca DBGetCompoundarray dbputqm DBPutQuadmesh

dbgetcurve DBGetCurve dbputqv1 DBPutQuadvar1

dbinqca DBInqCompoundarray dbputum DBPutUcdmesh

dbinqfile DBInqFile dbputuv1 DBPutUcdvar1

dbinqlen DBGetVarLength dbputzl DBPutZonelist

dbmkdir DBMkDir dbrdvar DBReadVar

dbmkoptlist DBMakeOptlist dbrdvarslice DBReadVarSlice

dbopen DBOpen dbsetdir DBSetDir

dbputca DBPutCompoundarray dbshowerrors DBShowErrors

dbputcurve DBPutCurve dbwrite DBWrite

dbputfl DBPutFacelist dbwriteslice DBWriteSlice

dbputmat DBPutMaterial

dbadd*opt

Silo User’s Guide 3-5

dbadd*opt—Add an option to an option list.

Synopsis:

integer function dbaddcopt (optlist_id, option, cvalue, lcvalue)
integer function dbadddopt (optlist_id, option, dvalue)
integer function dbaddiopt (optlist_id, option, ivalue)
integer function dbaddropt (optlist_id, option, rvalue)

integer ivalue, optlist_id, option, lcvalue
double precision dvalue
real rvalue
character*(*) cvalue

Arguments:

optlist_id Identifier returned from a previous call to dbmkoptlist.

option Option definition. One of the predefined values described in the table in the
notes section of each command which accepts an option list. Also see Table 8.

ivalue Integer value associated withoption.

dvalue Double precision value associated with option.

rvalue Real value associated withoption.

cvalue Character value associated withoption.

lcvalue Length of thecvalue variable parameter in characters.

Returns:

These functions return zero on success and -1 on failure.

Description:

Thedbadd*optfunctionsaddanoption/valuepair to anoptionlist. Severalof theoutputfunctions
acceptoptionlists to provide informationof anancillarynature.ThisFortraninterfaceis split into
multiple functions, one for each data type. Use the function appropriate for the given option type.

dbcalcfl

3-6 Silo User’s Guide

dbcalcfl—Calculate an external facelist for a UCD mesh.

Synopsis:

integer dbcalcfl (znodelist, nnodes, origin, zshapesize,
zshapecnt, nzshapes, matlist, bnd_method, id)

integer zonelist(*), nnodes, origin, zshapesize(*)
integer zshapecnt(*), nzshapes, matlist(*), bnd_method, id

Arguments:

znodelist Array containing node indices describing mesh zones.

nnodes Number of nodes in associated mesh.

origin Origin for indices in theznodelist array. Should be zero or one.

zshapesize Array of lengthnzshapes containing the number of nodes used by each zone
shape.

zshapecnt Array of lengthnzshapes containing the number of zones having each shape.

nzshapes Number of zone shapes.

matlist Array providing material numbers for each zone (else DB_F77NULL).

bnd_method Method to use for calculating external faces. See description below.

id Returnedfacelistidentifier. (Thisshouldnotbereliedupon,astheuseof facelist
identifiers is no longer supported.)

Returns:

dbcalcfl returns zero on success and -1 on failure.

Description:

The dbcalcfl function calculates an external facelist from the zonelist and zone information
describing a UCD mesh. It returns the object identifier for this object. The facelist should be writ-
teninto themeshwith thedbputflfunction.Thecalculationof theexternalfacelistis controlledby
the bnd_method parameter as defined in the table below:

bnd_method Meaning

0 Do not use material boundaries when computing external faces. The
matlist parameter can be replaced with DB_F77NULL.

1 In addition to true external faces, include faces on material boundaries
between two clean zones. The matlist parameter must be provided.

dbcalcfl

Silo User’s Guide 3-7

2 In addition to true external faces, include faces on material boundaries
between two clean zones and between one clean and one mixed zone
(only the face from the clean zone will be included.) The matlist parame-
ter must be provided.

4 In addition to true external faces, include faces on material boundaries
between two clean zones and between one clean and one mixed zone
(both faces will be included in this case.) The matlist parameter must be
provided.

bnd_method Meaning

dbclose

3-8 Silo User’s Guide

dbclose—Close a Silo database.

Synopsis:

integer function dbclose (dbid)

integer dbid

Arguments:

dbid Database identifier.

Returns:

dbclose returns zero on success and -1 on failure.

Description:

The dbclose function closes a Silo database.

dbcreate

Silo User’s Guide 3-9

dbcreate—Create a Silo output file.

Synopsis:

integer function dbcreate (pathname, lpathname, mode, target,
fileinfo, lfileinfo, filetype, dbid)

character*(*) pathname, fileinfo
integer lpathname, mode, target, lfileinfo, filetype, dbid

Arguments:

pathname Pathname of the file to create. This can be either an absolute or relative path.

lpathname Length of thepathname parameter in characters.

mode Creation mode. One of the predefined Silo modes: DB_CLOBBER or
DB_NOCLOBBER.

target Destination file format. One of the predefined types: DB_LOCAL, DB_SUN3,
DB_SUN4, DB_SGI, DB_RS6000, or DB_CRAY.

fileinfo Character string containing descriptive information about the file’s contents.
This information is usually printed by applications when this file is opened. If
no such information is needed, send DB_F77NULL for this argument.

lfileinfo Length of thefileinfo parameter in characters.

filetype Destination file type. Currently only one type is supported: DB_PDB.

dbid Returned database identifier for this file.

Returns:

dbcreate returns zero on success and -1 on failure.

Description:

The dbcreate function creates a Silo file and initializes it for writing data.

Notes:

Theunderlyingdatabaselibrary (PDBLib) supportstheconceptof targetingoutputfiles.Thatis, a
Sun IEEE file can be created on the Cray, and vice versa. If creating files on a mainframe or other
powerful computer, it is best to target the file for the machine where the file will be processed.
Because of the extra time required to do the floating point conversions, however, one may wish to
bypass the targeting function by providing DB_LOCAL as the target.

Silo currently creates only one kind of file, a PDB file. This PDB file contains some special struc-
tures for handling objects and directory hierarchies.

Note that regardless of what type of file is created, it can still be read on any machine.

dbfgetca

3-10 Silo User’s Guide

dbfgetca—Fast get of Compound Array object from Silo file.

Synopsis:

integer function dbfgetca (dbid, name, lname, values, nvalues)

integer dbid, lname, nvalues
character*(*) name
real values(*)

Arguments:

dbid Database identifier.

name Name of the compound array.

lname Length of thename parameter in characters.

values Returned array of lengthnvalues containing the data values.

nvalues Returned length of thevalues array.

Returns:

dbfgetca returns zero on success and -1 on failure.

Description:

The dbfgetca function reads in a compound array from the Silo database, and returns the values
associated with it.

dbfreeoptlist

Silo User’s Guide 3-11

dbfreeoptlist—Free memory associated with an option list.

Synopsis:

integer function dbfreeoptlist (optlist_id)

integer optlist_id

Arguments:

optlist_id Identifier returned from a previous call to dbmkoptlist.

Returns:

dbfreeoptlist returns zero on success and -1 on failure.

Description:

The dbfreeoptlist function releases the memory associated with the given option list. The individ-
ual option values are not freed.

dbgetca

3-12 Silo User’s Guide

dbgetca—Read a compound array from a Silo database.

Synopsis:

integer function dbgetca (dbid, name, lname, enames, lenames,
elengths, nelems, values, nvalues, datatype)

integer dbid, lname, nelems, nvalues, datatype
integer lenames(*), elengths(*)
character*(*) name, enames
real values(*)

Arguments:

dbid Database identifier.

name Name of the compound array.

lname Length of thename parameter in characters.

enames Array with length determined bylenames containing the returned names of
the elements. These names are stored sequentially in the array.

lenames Returnedarrayof lengthnelems containingthelengthsof thenamesstoredin
the enames array.

elengths Returned array of lengthnelems containing the lengths of the elements.

nelems Number of elements.

values Returned array of lengthnvalues containing the data values.

nvalues Number of values.

datatype The datatype of the values. One of the predefined Silo data types.

Returns:

dbgetca returns zero on success and -1 on failure.

Description:

Thedbgetcafunctionreadsin acompoundarrayfrom theSilo database,andreturnsthenamesand
values associated with it.

dbgetcurve

Silo User’s Guide 3-13

dbgetcurve—Read a curve from a Silo database.

Synopsis:

integer function dbgetcurve (dbid, curvename, lcurvename,
maxpoints, xvals, yvals, datatype, npoints)

integer dbid, lcurvename, maxpoints, datatype, npoints
real(*) xvals, yvals
character*(*) curvename

Arguments:

dbid Database identifier.

curvename Name of the curve to read.

lcurvename Length of thecurvename parameter in characters

maxpoints The maximum number of points to read into thexvals andyvals arrays.
Normally, this is the length of the arrays.

xvals Array to readx-axisvaluesinto. No morethanmaxpoints valueswill beread
into this array.

yvals Array to ready-axisvaluesinto. No morethanmaxpoints valueswill beread
into this array.

datatype Returned Silo datatype of the data values

npoints Returned number of points in the curve. Note that this number may be greater
thanmaxpoints.

Returns:

dbcurve returns zero on success and -1 on failure..

Description:

Thedbgetcurve functionreadsacurve from theSilo databaseandreturnsthedatafrom thatcurve
in thexvals, yvals, datatype, andnpoints paramters..

dbgetqv1

3-14 Silo User’s Guide

dbgetqv1—Read a scalar quad variable object from a Silo database.

Synopsis:

integer function dbgetqv1 (dbid, varname, lvarname, var, dims,
ndims, mixvar, mixlen, datatype, centering)

integer dbid, lvarname, ndims, mixlen, datatype, centering
integer dims(*)
character*(*) varname
real var(*), mixvar(*)

Arguments:

dbid Database identifier.

varname Name of the variable.

lvarname Length of thename parameter in characters.

var Returnedarraydefiningthevaluesassociatedwith thisvariable.Thestoragefor
the array must be supplied by the calling routine.

dims Returnedarrayof lengthndims whichdescribesthedimensionalityof thevari-
able. Each value in thedims array indicates the number of elements contained
in thevariablealongthatdimension.Thestoragefor thearraymustbesupplied
by the calling routine.

ndims Returned number of dimensions.

mixvar Returnedarraydefiningthemixed-datavaluesassociatedwith thisvariable.The
storagefor thearraymustbesuppliedby thecallingroutine.If themixedvalues
are not desired, this should be set to DB_F77NULL.

mixlen Returned length of the mixed data arrays.

datatype Returned datatype of sub-variables. One of the predefined Silo data types.

centering Returned centering of the sub-variables on the associated mesh. One of the pre-
defined types: DB_NODECENT or DB_ZONECENT.

Returns:

dbgetqv1 returns zero on success and -1 on failure.

Description:

The dbgetqv1 function reads a scalar variable associated with a quad mesh from a Silo database.

dbinqca

Silo User’s Guide 3-15

dbinqca—Inquire Compound Array attributes.

Synopsis:

integer function dbinqca (dbid, name, lname, tlenames, nelems,
nvalues, datatype)

integer dbid, lname, tlenames, nelems, nvalues, datatype
character*(*) name

Arguments:

dbid Database identifier.

name Name of the compound array.

lname Length of thename parameter in characters.

tlenames Returned sum of the lengths of the element names.

nelems Returned number of array elements.

nvalues Returned number of data values.

datatype Datatype of the data values. One of the predefined Silo data types.

Returns:

dbinqca returns zero on success and -1 on failure.

Description:

The dbinqca function returns information about the Compound Array. It does not return the data
values themselves; use dbgetca instead.

dbinqfile

3-16 Silo User’s Guide

dbinqfile—Determine iffilename is a Silo file.

Synopsis:

integer function dbinqfile (filename, lfilename, issilo)

integer lfilename, issilo
character*(*) filename

Arguments:

filename Name of file.

lfilename Length of thefilename parameter in characters.

issilo Returned value indicating if filename is a Silo file.

Returns:

dbinqlen returns zero on success and -1 on failure.

Description:

Thedbinqlenfunctionassignszeroto issilo if filename is notaSilo file andanon-zeronumber
to issilo iffilename is a Silo file.

dbinqlen

Silo User’s Guide 3-17

dbinqlen—Return the number of elements in a simple variable.

Synopsis:

integer function dbinqlen (dbid, varname, lvarname, len)

integer dbid, lvarname, len
character*(*) varname

Arguments:

dbid Database identifier.

varname Simple variable name.

lvarname Length of thevarname parameter in characters.

len Length of the variable (number of elements).

Returns:

dbinqlen returns zero on success and -1 on failure.

Description:

The dbinqlen function returns the length of the requested simple variable in number of elements.
For example, a 16 byte array containing 4 floating point values has 4 elements.

dbmkdir

3-18 Silo User’s Guide

dbmkdir—Create a new directory in the open Silo file.

Synopsis:

integer function dbmkdir (dbid, dirname, ldirname, id)

integer dbid, ldirname, id
character*(*) dirname

Arguments:

dbid Database identifier.

dirname Name of the directory to create.

ldirname Length of thedirname parameter in characters.

id Returned status value. This is zero on success and -1 on failure. (The use of
directory identifiers is no longer supported.)

Returns:

dbmkdir returns zero on success and -1 on failure.

Description:

The dbmkdir function creates a new directory in the open Silo file as a child of the current direc-
tory (see dbsetdir). The directory name may be an absolute path name similar to “/dir/sub-
dir”, or may be a relative path name similar to “../../dir/subdir”.

dbmkoptlist

Silo User’s Guide 3-19

dbmkoptlist—Allocate an option list.

Synopsis:

integer function dbmkoptlist (maxopts, optlist_id)

integer maxopts, optlist_id

Arguments:

maxopts Maximum number of options needed for this option list.

optlist_id Returned identifier for this option list.

Returns:

dbmkoptlist returns zero on success and -1 on failure.

Description:

The dbmkoptlist function allocates memory for an option list and initializes it. Use the function
dbadd*opt to populate the option list structure, and dbfreeoptlist to free it.

dbopen

3-20 Silo User’s Guide

dbopen—Open an existing Silo file.

Synopsis:

integer function dbopen (name, lname, type, mode, dbid)

integer type, lname, mode, dbid
character*(*) name

Arguments:

name Name of the file to open. Can be either an absolute or relative path.

lname Length of thename parameter in characters.

type The type of file to open. One of the predefined types: DB_SDX, DB_PDB,
DB_TAURUS, or DB_UNKNOWN.

mode The mode of the file to open. One of the values DB_READ or DB_APPEND.

dbid Returned database identifier.

Returns:

dbopen returns zero on success and -1 on failure.

Description:

The dbopen function opens an existing Silo file. If the filetype if DB_UNKNOWN, Silo will
guess at the file type, getting it right most of the time.

The mode parameter allows a user to append to an existing Silo file. If a file is dbopen’ed with a
mode of DB_APPEND, the file will support write operations as well as read operations.

dbputca

Silo User’s Guide 3-21

dbputca—Write a Compound Array object into a Silo file.

Synopsis:

integer function dbputca (dbid, name, lname, enames, lenames,
elengths, nelems, values, nvalues, datatype,
optlist_id, id)

integer dbid, lname, nelems, nvalues, datatype, optlist_id, id
integer lenames(*), elengths(*)
character*(*) name
character*32 enames(*)
real values(*)

Arguments:

dbid Database identifier.

name Name of the compound array.

lname Length of the name parameter in characters.

enames Array of lengthnelems containingthenamesof theelements.This is anarray
of 32-character strings.

lenames Array of lengthnelems containing the lengths of theenames strings.

elengths Array of lengthnelems containing the lengths of the elements.

nelems Number of simple array elements.

values Array whose length is determined bynelems andelengths containing the
values of the simple array elements.

nvalues Total length of thevalues array.

datatype Data type of thevalues array. One of the predefined Silo types.

optlist_id Optionlist identifiercreatedwith dbmkoptlistandpopulatedwith dbadd*opt.If
no options are to be provided, use DB_F77NULL for this argument.

id Returned status value. This is zero on success and -1 on failure. (The use of
compound array identifiers is no longer supported.)

Returns:

dbputca returns zero on success and -1 on failure.

Description:

The dbputca function writes a compound array object into a Silo file. A compound array is an
array whose elements are simple arrays. All of the simple arrays have elements of the same data
type, and each have a name.

Often, an application will partition a block of memory into named pieces, but write the block to a
database as a single entity. Fortran common blocks are used in this way. The compound array
object is an abstraction of this partitioned memory block.

dbputcurve

3-22 Silo User’s Guide

dbputcurve—Write a curve object into a Silo file

Synopsis:

integer function dbputcurve (dbid, curvename, lcurvename, xvals,
yvals, datatype, npoints, optlist_id, id)

integer dbid, lcurvename, datatype, npoints, optlist_id, id
character*(*) curvename
real(*) xvals, yvals

Arguments:

dbid Database identifier

curvename Name of the curve

lcurvename Length of thecurvename parameter in characters

xvals Array of lengthnpoints containing the x-axis data values

yvals Array of lengthnpoints containing the y-axis data values

datatype Data type of thexvals andyvals arrays. One of the predefined Silo types.

npoints The number of points in the curve

optlist_id Optionlist identifiercreatedwith dbmkoptlistandpopulatedwith dbadd*opt.If
no options are to be provided, use DB_F77NULL for this argument.

id Returned status value. This is zero on success and -1 on failure.

Returns:

dbputcurve returns zero on success and -1 on failure.

Description:

The dbputcurve function writes a curve object into a Silo file. A curve is a set of x/y points that
describe a two-dimensional curve.

Both thexvals andyvals arrays must have the same datatype.

The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” for details on the use of this construct.

Option Name
Value Data

Type Option Meaning Default Value

DBOPT_LABEL integer Problem cycle value. 0

DBOPT_XLABEL character*(*) Label for the x-axis NULL

DBOPT_YLABEL character*(*) Label for the y-axis NULL

DBOPT_XUNITS character*(*) Character string defining the units for the
x-axis.

NULL

dbputcurve

Silo User’s Guide 3-23

DBOPT_YUNITS character*(*) Character string defining the units for the
y-axis

DBOPT_XVARNAME character*(*) Name of the domain (x) variable. This is
the problem variable name, not the code
variable name passed into the xvals
argument.

NULL

DBOPT_YVARNAME character*(*) Name of the domain (y) variable. This is
problem variable name, not the code vari-
able name passed into the yvals argu-
ment.

NULL

Option Name
Value Data

Type Option Meaning Default Value

dbputfl

3-24 Silo User’s Guide

dbputfl—Write a facelist object into a Silo file.

Synopsis:

integer function dbputfl (dbid, name, lname, nfaces, ndims,
nodelist, lnodelist, origin, zoneno,
shapesize, shapecnt, nshapes, types, typelist,
ntypes, id)

integer dbid, lname, nfaces, ndims, lnodelist, origin, nshapes
integer ntypes, id
character*(*) name
integer nodelist(*), shapesize(*), shapecnt(*)
integer zoneno(*), types(*), typelist(*)

Arguments:

dbid Database identifier.

name Name of the facelist structure.

lname Length of the name parameter in characters.

nfaces Number of external faces in associated mesh.

ndims Number of spatial dimensions represented by the associated mesh.

nodelist Array of lengthlnodelist containing node indices describing mesh faces.

lnodelist Length of thenodelist array.

origin Origin for indices innodelist array. Either zero or one.

zoneno Array of lengthnfaces containing the zone number from which each face
came. Use DB_F77NULL for this parameter if zone numbering info is not
wanted.(MeshTV requires a non-NULLzoneno for pseudocolor plots.)

shapesize Array of lengthnshapes containing the number of nodes used by each face
shape (for 3-D meshes only).

shapecnt Array of lengthnshapes containing the number of faces having each shape
(for 3-D meshes only).

nshapes Number of face shapes (for 3-D meshes only).

types Array of lengthnfaces containinginformationabouteachface.Thisargument
is ignored ifntypes is zero, or if this parameter is DB_F77NULL.

typelist Array of lengthntypes containingtheidentifiersfor eachtype.Thisargument
is ignored ifntypes is zero, or if this parameter is DB_F77NULL.

ntypes Number of types, or zero if type information was not provided.

id Returned status value. This is zero on success and -1 on failure. (The use of
facelist identifiers is no longer supported.)

Returns:

dbputfl returns zero on success and -1 on failure.

dbputfl

Silo User’s Guide 3-25

Description:

The dbputfl function writes a facelist object into the open Silo file. The name given to this object
can in turn be used as a parameter to the dbputum function.

Notes:

See the write-up of dbputum for a full description of the facelist data structures. NotethatMeshTV
expects this structure to contain descriptions of the external faces only. Also note that MeshTV, in
order to do pseudocolor plots correctly, requires a non-NULLzoneno.

dbputmat

3-26 Silo User’s Guide

dbputmat—Write a material data object into a Silo file.

Synopsis:

integer function dbputmat (dbid, name, lname, meshname, lmeshname,
nmat, matnos, matlist, dims, ndims, mix_next,
mix_mat, mix_zone, mix_vf, mixlen, datatype,
optlist_id, id)

integer dbid, lname, lmeshname, nmat, ndims, mixlen, datatype
integer optlist_id, id
integer matnos(*), matlist(*), dims(*), mix_next(*), mix_mat(*)
integer mix_zone(*)
character*(*) name
character*(*) meshname
real mix_vf(*)

Arguments:

dbid Database identifier.

name Name of the material data object.

lname Length of thename parameter in characters.

meshname Name of the mesh associated with this information.

lmeshname Length of themeshname parameter in characters.

nmat Number of materials.

matnos Array of lengthnmat containing valid material numbers.

matlist Array whosedimensionsaredefinedby dims andndims. It containsthemate-
rial numbers for each single-material (non-mixed) zone, and indices into the
mixed data arrays for each multi-material (mixed) zone. A negative value indi-
cates a mixed zone, and its absolute value is used as an index into the mixed
data arrays.

dims Array of lengthndimswhichdefinesthedimensionalityof thematlist array.

ndims Number of dimensions inmatlist array.

mix_next Array of lengthmixlen of indices into the mixed data arrays (one-origin).

mix_mat Array of lengthmixlen of material numbers for the mixed zones.

mix_zone Optionalarrayof lengthmixlen of backpointersto originatingzones. Theori-
gin is determined byDBOPT_ORIGIN. Even ifmixlen > 0, this argument is
optional.

mix_vf Array of lengthmixlen of volume fractions for the mixed zones.

mixlen Lengthof themixeddataarrays(or zeroif nomixeddatais present).If mixlen
> 0, then the “mix_” arguments describing the mixed data arrays must be non-
null.

datatype Volume fraction data type. One of the predefined Silo data types.

dbputmat

Silo User’s Guide 3-27

optlist_id Option list identifier created with dbmkoptlist and populated with dbadd*opt. If
no options are to be provided, use DB_F77NULL for this argument.

id Returned status value. This is zero on success and -1 on failure. (The use of
material identifiers is no longer supported.)

Returns:

dbputmat returns zero on success and -1 on failure.

Description:

The dbputmat function writes a material data object into the current open Silo file. The minimum
required information for a material data object is supplied via the standard arguments to this func-
tion. The optlist_id argument must be used for supplying any information not requested
through the standard arguments.

Notes:

The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” on page 3-2 for details on the use of this construct.

The model used for storing material data is the most efficient for MeshTV, and works as follows:

One zonal array, matlist, is used which contains the material number for a clean zone or an
index into the mixed data arrays if the zone is mixed. Mixed zones are marked with negative
entries in matlist, so you must take ABS(matlist[i]) to get the actual 1-origin mixed data
index. All indices are 1-origin to allowmatlist to use zero as a material number.

The mixed data arrays are essentially a linked list of information about the mixed elements within
a zone. Each mixed data array is of length mixlen. For a given index i, the following information
is known about the i’th element:

mix_zone[i] The index of the zone which contains this element. The origin is determined by
DBOPT_ORIGIN.

mix_mat[i] The material number of this element

mix_vf[i] The volume fraction of this element

mix_next[i] The 1-origin index of the next material entry for this zone, else 0 if this is the
last entry.

Option Name Value Data Type Option Meaning Default Value

DBOPT_CYCLE integer Problem cycle value. 0

DBOPT_LABEL character*(*) Character string defining the label
associated with material data.

DB_F77NULL

DBOPT_MAJORORDER integer Indicator for row-major (0) or col-
umn-major (1) storage for multidi-
mensional arrays.

0

DBOPT_ORIGIN integer Origin for mix_zone. Zero or one. 0

DBOPT_TIME real Problem time value. 0.0

dbputmat

3-28 Silo User’s Guide

Figure 3-1: Example using mixed data arrays for representing material information.

1

1 1

1 2

2

2

2

Mesh ‘plot’
with material
numbers and

1

1

2

2-1

-3 Corresponding
matlist array

mix_zone

1:
2:
3:
4:

2
2
5
5

mix_mat

1:
2:
3:
4:

1
2
1
2

mix_vf

1:
2:
3:
4:

.4

.6

.7

.3

mix_next

1:
2:
3:
4:

2
0
4
0

interface

dbputmmat

Silo User’s Guide 3-29

dbputmmat—Write a multi-block material object into the open Silo file

Synopsis:

integer function dbputmmat (dbid, name, lname, nmat, matnames,
lmatnames, optlist_id, id)

integer dbid, lname, nmat, optlist_id, id
integer lmatnames(*)
character*(*) name
character*32 matnames(*)

Arguments:

dbid Database identifier.

name Name of the multi-material object.

lname Length of thename parameter in characters.

nmat Number of materials provided.

matnames Array of lengthnmat containing the names of the materials to be associated
with the multi-material object. This is an array of 32-character strings.

lmatnames Array of lengthnmat containing the lengths of thematnames strings.

optlist_id Optionlist identifiercreatedwith dbmkoptlistandpopulatedwith dbadd*opt.If
no options are to be provided, use DB_F77NULL for this argument.

id Returned status value. This is zero on success and -1 on failure. (The use of
multi-material identifiers is no longer supported.)

Returns:

dbputmmat returns zero on success and -1 on failure.

Description:

The dbputmmat function writes a multi-material object into the open Silo file.

Notes:

The following table describes the options accepted by this function:

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_BLOCKORIGIN integer The origin of the block numbers. 1

DBOPT_GROUPORIGIN integer The origin of the group numbers. 1

DBOPT_NGROUPS integer The total number of groups in this multi-
mat species object.

0

DBOPT_NMATNOS integer Number of material numbers stored in the
DBOPT_MATNOS option.

0

dbputmmat

3-30 Silo User’s Guide

DBOPT_MATNOS integer*(*) Array of length DBOPT_NMATNOS contain-
ing a complete list of the material numbers
used in the Multimat object.
DBOPT_NMATNOS must be set for this to
work correctly.

NULL

DBOPT_CYCLE integer Problem cycle value. 0

DBOPT_TIME real Problem time value. 0.0

Option Name
Value

Data Type Option Meaning Default Value

dbputmmesh

Silo User’s Guide 3-31

dbputmmesh—Write a multi-block mesh object into the open Silo file.

Synopsis:

integer function dbputmmesh (dbid, name, lname, nmesh, meshnames,
lmeshnames, meshtypes, optlist_id, id)

integer dbid, lname, nmesh, lmeshnames(*)
integer meshtypes(*), optlist_id, id
character*32 meshnames(*)
character*(*) name

Arguments:

dbid Database identifier.

name Name of the multi-block mesh structure.

lname Length of thename parameter in characters.

nmesh Number of meshes provided.

meshnames Array of lengthnmesh containingthenamesof themeshes.This is anarrayof
32-character strings.

lmeshnames Array of lengthnmesh containing the lengths of themeshnames strings.

meshtypes Array of lengthnmesh containingthetypeof eachmesh.Oneof thepredefined
types: DB_QUAD_RECT, DB_QUAD_CURV, DB_UCD.

optlist_id Optionlist identifiercreatedwith dbmkoptlistandpopulatedwith dbadd*opt.If
no options are to be provided, use DB_F77NULL for this argument.

id Returned status value. This is zero on success and -1 on failure. (The use of
multimesh identifiers is no longer supported.)

Returns:

dbputmmesh returns zero on success and -1 on failure.

Description:

The dbputmmesh function writes a multi-block mesh object into the open Silo file. It accepts as
input descriptions of the various sub-meshes (blocks) which are part of this mesh.

Notes:

The following table describes the options accepted by this function:

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_BLOCKORIGIN integer The origin of the block numbers. 1

DBOPT_GROUPORIGIN integer The origin of the group numbers. 1

dbputmmesh

3-32 Silo User’s Guide

DBOPT_NGROUPS integer The total number of groups in this multi-
mesh object.

0

DBOPT_CYCLE integer Problem cycle value. 0

DBOPT_TIME real Problem time value. 0.0

Option Name
Value

Data Type Option Meaning Default Value

dbputmsp

Silo User’s Guide 3-33

dbputmsp—Write a material species data object into a Silo file

Synopsis:

integer function dbputmsp (dbid, name, lname, matname, lmatname,
nmat, nmatspec, speclist, dims, ndims,
nspecies_mf, species_mf, mix_speclist, mixlen,
datatype, optlist_id, id)

integer dbid, lname, lmatname, nmat, ndims, nspecies_mf
integer mixlen, datatype, optlist_id, id
integer nmatspec(*), speclist(*), dims(*), mix_speclist(*)
character*(*) name, matname
real species_mf(*)

Arguments:

dbid Database identifier.

name Name of the material species data object.

lname Length of thename parameter in characters.

matname Name of the material object with which the material species object is associ-
ated.

lmatname Length of thematname parameter in characters.

nmat Number of materials.

nmatspec Array of lengthnmat containing the number of material species associated
with each material.

speclist Array of dimensionndims * dims of indicesinto thespecies_mfarray. Each
entry corresponds to one zone. A positive value is the index to the mass frac-
tionsof acleanzone’smaterialspecies.A negativevaluemeansthatthezoneis
amixedzoneandthatthearraymix_speclist containstheindex to thespe-
cies mass fractions.

dims Array of lengthndims that defines the length of thespeclist array.

ndims Number of dimensions in thespeclist array.

nspecies_mf Number of material species mass fractions.

species_mf Array of lengthnspecies_mf containing mass fractions of the material spe-
cies.

mix_speclistArray of length mixlen containing indices into the species_mf array. These are
used for mixed zones.

mixlen Length of themix_list array.

datatype Thedatatypeof themassfractiondatain species_mf. Oneof thepredefined
Silo data types.

optlist_id Optionlist identifiercreatedwith dbmkoptlistandpopulatedwith dbadd*opt.If
no options are to be provided, use DB_F77NULL for this argument.

dbputmsp

3-34 Silo User’s Guide

id Returned status value. This is zero on success and -1 on failure. (The use of
material species identifiers is no longer supported.)

Returns:

dbputmsp returns zero on success and -1 on failure.

Description:

The dbputmsp function writes a material species data object into the open Silo file. The minimum
required information for a material species data object is supplied via the standard arguments to
this function. The optlist_id argument must be used for supplying any information not
requested through the standard arguments.

Notes:

The following table describes the options accepted by this function:

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_MAJORORDER integer Indicator for row-major (0) or column-
major (1) storage for multidimensional
arrays.

0

DBOPT_ORIGIN integer Origin for arrays. Zero or one. 0

dbputmvar

Silo User’s Guide 3-35

dbputmvar—Write a multi-block variable object into the open Silo file.

Synopsis:

integer function dbputmvar (dbid, name, lname, nvar, varnames,
lvarnames, vartypes, optlist_id, id)

integer dbid, lname, nvar, optlist_id, id
integer lvarnames(*), vartypes(*)
character*(*) name
character*32 varnames(*)

Arguments:

dbid Database identifier.

name Name of the multi-block variable.

lname Length of thename parameter in characters.

nvar Number of variables associated with the multi-block variable.

varnames Array of lengthnvar containing the names of the variables associated with
each block. This is an array of 32-character strings.

lvarnames Array of lengthnvar containing the lengths of thevarnames strings.

vartypes Array of lengthnvar containingthetypesof thevariables.Eachentrymustbe
one of the following: DB_POINTVAR, DB_QUADVAR, or DB_UCDVAR.

optlist_id Optionlist identifiercreatedwith dbmkoptlistandpopulatedwith dbadd*opt.If
no options are to be provided, use DB_F77NULL for this argument.

id Returned status value. This is zero on success and -1 on failure. (The use of
multi-block variable identifiers is no longer supported.)

Returns:

dbputmvar returns zero on success and -1 on failure.

Description:

The dbputmvar function writes a multi-block variable object into the open Silo file.

Notes:

The following table describes the options accepted by this function:

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_BLOCKORIGIN integer The origin of the block numbers. 1

DBOPT_GROUPORIGIN integer The origin of the group numbers. 1

DBOPT_NGROUPS integer The total number of groups in this multivar
object.

0

dbputmvar

3-36 Silo User’s Guide

DBOPT_CYCLE integer Problem cycle value. 0

DBOPT_TIME real Problem time value. 0.0

Option Name
Value

Data Type Option Meaning Default Value

dbputpm

Silo User’s Guide 3-37

dbputpm—Write a point mesh object into the open Silo file.

Synopsis:

integer function dbputpm (dbid, name, lname, ndims, x, y, z, nels,
datatype, optlist_id, id)

integer dbid, lname, ndims, nels, datatype, optlist_id, id
real x(*), y(*), z(*)
char*(*) name

Arguments:

dbid Database identifier.

name Name of the mesh.

lname Length of thename parameter in characters.

ndims Number of dimensions.

x, y, z Arrays containing coordinate values. Ifndims is 2, thenz is ignored.

nels Number of elements (points) in the mesh.

datatype Datatype of the coordinate arrays. One of the predefined Silo data types.

optlist_id Optionlist identifiercreatedwith dbmkoptlistandpopulatedwith dbadd*opt.If
no options are to be provided, use DB_F77NULL for this argument.

id Returned status value. This is zero on success and -1 on failure. (The use of
pointmesh identifiers is no longer supported.)

Returns:

dbputpm returns zero on success and -1 on failure.

Description:

The dbputpm function accepts pointers to the coordinate arrays and is responsible for writing the
mesh into a pointmesh object in the Silo file.

A Silo pointmesh object contains all necessary information for describing a mesh. This includes
the coordinate arrays, the number of dimensions (1,2,3,...) and the number of points.

Notes:

The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” on page3-2 for details on the use of this construct.

Option Name Value Data Type Option Meaning Default Value

DBOPT_GROUPNUM integer The group number to which this
pointmesh belongs.

-1 (not in a group)

DBOPT_CYCLE integer Problem cycle value. 0

dbputpm

3-38 Silo User’s Guide

DBOPT_XLABEL character*(*) Character string defining the label
associated with the X dimension.

DB_F77NULL

DBOPT_YLABEL character*(*) Character string defining the label
associated with the Y dimension.

DB_F77NULL

DBOPT_ZLABEL character*(*) Character string defining the label
associated with the Z dimension.

DB_F77NULL

DBOPT_NSPACE integer Number of spatial dimensions used
by this mesh.

ndims

DBOPT_ORIGIN integer Origin for arrays. Zero or one. 0

DBOPT_TIME real Problem time value. 0.0

DBOPT_XUNITS character*(*) Character string defining the units
associated with the X dimension.

DB_F77NULL

DBOPT_YUNITS character*(*) Character string defining the units
associated with the Y dimension.

DB_F77NULL

DBOPT_ZUNITS character*(*) Character string defining the units
associated with the Z dimension.

DB_F77NULL

Option Name Value Data Type Option Meaning Default Value

dbputpv1

Silo User’s Guide 3-39

dbputpv1—Write a scalar point variable object into the open Silo file.

Synopsis:

integer function dbputpv1 (dbid, name, lname, meshname, lmeshname,
var, nels, datatype, optlist_id, id)

integer dbid, lname, lmeshname, nels, datatype, optlist_id, id
character*(*) name, meshname
real var(*)

Arguments:

dbid Database identifier.

name Name of the variable.

lname Length of thename parameter in characters

meshname Name of the associated point mesh.

lmeshname Length of the meshname parameter in characters.

var Array containing data values for this variable.

nels Number of elements (points) in variable.

datatype Datatype of the variable. One of the predefined Silo data types.

optlist_id Optionlist identifiercreatedwith dbmkoptlistandpopulatedwith dbadd*opt.If
no options are to be provided, use DB_F77NULL for this argument.

id Returned status value. This is zero on success and -1 on failure. (The use of
pointmesh variable objects is no longer supported.)

Returns:

dbputpv1 returns zero on success and -1 on failure.

Description:

The dbputpv1 function accepts a value array and is responsible for writing the variable into a
point-variable object in the Silo file.

A Silo point-variableobjectcontainsall necessaryinformationfor describingavariableassociated
with apointmesh.This includesthenumberof arrays,thedatatypeof thevariable,andthenumber
of points. This function should be used when writing scalar quantities.

dbputpv1

3-40 Silo User’s Guide

Notes:

The following table describes the options accepted by this function. See “Using the Silo Option
Parameter” on page 3-2 for details on the use of this construct.

Option Name Value Data Type Option Meaning Default Value

DBOPT_CYCLE integer Problem cycle value. 0

DBOPT_NSPACE integer Number of spatial dimensions
used by this mesh.

ndims

DBOPT_ORIGIN integer Origin for arrays. Zero or one. 0

DBOPT_TIME real Problem time value. 0.0

dbputqm

Silo User’s Guide 3-41

dbputqm—Write a quad mesh object into the open Silo file.

Synopsis:

integer function dbputqm (dbid, name, lname, xname, lxname, yname,
lyname, zname, lzname, x, y, z, dims, ndims,
datatype, coordtype, optlist_id, id)

integer dbid, lname, lxname, lyname, lzname, ndims, datatype
integer coordtype, optlist_id, id
integer dims(*)
char*(*) name, xname, yname, zname
real x(*), y(*), z(*)

Arguments:

dbid Database identifier.

name Name of the mesh.

lname Length of thename parameter in characters.

[xyz]name Name to associate with the corresponding [xyz] coordinate array.

l[xyz]name Length of the [xyz]name parameter in characters.

x, y, z Arrays containing coordinate values. Ifndims is 2, thenz is ignored.

dims Array of lengthndims which describes the dimensionality of the mesh. Each
value in thedims array indicates the number of nodes contained in the mesh
along that dimension.

ndims Number of dimensions.

datatype Datatype of the coordinate arrays. One of the predefined Silo data types.

coordtype Coordinate array type. One of the predefined types: DB_COLLINEAR or
DB_NONCOLLINEAR. Collinear coordinate arrays are always one-dimen-
sional, regardless of the dimensionality of the mesh; non-collinear arrays have
the same dimensionality as the mesh.

optlist_id Optionlist identifiercreatedwith dbmkoptlistandpopulatedwith dbadd*opt.If
no options are to be provided, use DB_F77NULL for this argument.

id Returned status value. This is zero on success and -1 on failure. (The use of
quadmesh identifiers is no longer supported.)

Returns:

dbputqm returns zero on success and -1 on failure.

Description:

The dbputqm function accepts pointers to the coordinate arrays and is responsible for writing the
mesh into a quadmesh object in the Silo file.

dbputqm

3-42 Silo User’s Guide

A Silo quadmesh object contains all necessary information for describing a mesh. This includes
the coordinate arrays, the rank of the mesh (1,2,3,...) and the type (collinear or non-collinear.) In
addition, other information is useful and is therefore optionally included (row-major indicator,
time and cycle of mesh, offsets to ‘real’ zones, plus coordinate system type.)

The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” on page3-2 for details on the use of this construct.

Option Name Value Data Type Option Meaning Default Value

DBOPT_GROUPNUM integer The group number to which this
quadmesh belongs.

-1 (not in a group)

DBOPT_COORDSYS integer Coordinate system. One of:
DB_CARTESIAN,
DB_CYLINDRICAL,
DB_SPHERICAL,
DB_NUMERICAL, or DB_OTHER.

DB_OTHER

DBOPT_CYCLE integer Problem cycle value. 0

DBOPT_FACETYPE integer Zone face type. One of the pre-
defined types: DB_RECTILINEAR
or DB_CURVILINEAR.

DB_RECTILINEAR

DBOPT_HI_OFFSET integer * Array of length ndims which
defines zero-origin offsets from the
last node for the ending index along
each dimension.

{0,0,...}

DBOPT_LO_OFFSET integer * Array of length ndims which
defines zero-origin offsets from the
first node for the starting index
along each dimension.

{0,0,...}

DBOPT_XLABEL character*(*) Character string defining the label
associated with the X dimension.

DB_F77NULL

DBOPT_YLABEL character*(*) Character string defining the label
associated with the Y dimension.

DB_F77NULL

DBOPT_ZLABEL character*(*) Character string defining the label
associated with the Z dimension.

DB_F77NULL

DBOPT_MAJORORDER integer Indicator for row-major (0) or col-
umn-major (1) storage for multidi-
mensional arrays.

0

DBOPT_NSPACE integer Number of spatial dimensions used
by this mesh.

ndims

DBOPT_ORIGIN integer Origin for arrays. Zero or one. 0

DBOPT_PLANAR integer Planar value. One of: DB_AREA or
DB_VOLUME.

DB_OTHER

DBOPT_TIME real Problem time value. 0.0

DBOPT_XUNITS character*(*) Character string defining the units
associated with the X dimension.

DB_F77NULL

dbputqm

Silo User’s Guide 3-43

The options DB_LO_OFFSET and DB_HI_OFFSET should be used if the mesh being described
uses the notion of “phoney” zones (i.e., some zones should be ignored.) For example, if a 2-D
mesh had designated the first column and row, and the last two columns and rows as “phoney”,
then we would use: lo_off = {1,1} and hi_off = {2,2}.

DBOPT_YUNITS character*(*) Character string defining the units
associated with the Y dimension.

DB_F77NULL

DBOPT_ZUNITS character*(*) Character string defining the units
associated with the Z dimension.

DB_F77NULL

Option Name Value Data Type Option Meaning Default Value

dbputqv1

3-44 Silo User’s Guide

dbputqv1—Write a scalar quad variable object into the open Silo file.

Synopsis:

integer function dbputqv1 (dbid, name, lname, meshname, lmeshname,
var, dims, ndims, mixvar, mixlen, datatype,
centering, optlist_id, id)

integer dbid, lname, lmeshname, ndims, mixlen, datatype
integer centering, optlist_id, id
integer dims(*)
character*(*) name, meshname
real var(*), mixvar(*)

Arguments:

dbid Database identifier.

name Name of the variable.

lname Length of thename parameter in characters.

meshname Name of the mesh associated with this variable (written with dbputqm or dbpu-
tum.) If no association is to be made, this value should be DB_F77NULL.

lmeshname Length of themeshname parameter in characters.

var Array defining the values associated with this variable.

dims Array of lengthndims which describes the dimensionality of the variable.
Eachvaluein thedims arrayindicatesthenumberof elementscontainedin the
variable along that dimension.

ndims Number of dimensions.

mixvar Array defining the mixed-data values associated with this variable. If no mixed
values are present, this should be DB_F77NULL.

mixlen Length of the mixed data arrays, if provided.

datatype Datatype of sub-variables. One of the predefined Silo data types.

centering Centering of the sub-variables on the associated mesh. One of the predefined
types: DB_NODECENT or DB_ZONECENT.

optlist_id Optionlist identifiercreatedwith dbmkoptlistandpopulatedwith dbadd*opt.If
no options are to be provided, use DB_F77NULL for this argument.

id Returned status value. This is zero on success and -1 on failure. (The use of
quadmesh variable identifiers is no longer supported.)

Returns:

dbputqv1 returns zero on success and -1 on failure.

dbputqv1

Silo User’s Guide 3-45

Description:

The dbputqv1 function writes a scalar variable associated with a quad mesh into a Silo file. Note
that variables will be either node-centered or zone-centered. A quad-var object contains the vari-
able values, plus the name of the associated quadmesh. Other information can also be included.
This function should be used for writing scalar fields.

Notes:

The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” on page 3-2 for details on the use of this construct.

Option Name
Value Data

Type Option Meaning Default Value

DBOPT_COORDSYS integer Coordinate system. One of:
DB_CARTESIAN, DB_CYLINDRICAL,
DB_SPHERICAL, DB_NUMERICAL, or
DB_OTHER.

DB_OTHER

DBOPT_CYCLE integer Problem cycle value. 0

DBOPT_FACETYPE integer Zone face type. One of the predefined
types: DB_RECTILINEAR or
DB_CURVILINEAR.

DB_RECTILINEAR

DBOPT_LABEL character*(*) Character string defining the label associ-
ated with this variable.

DB_F77NULL

DBOPT_MAJORORDER integer Indicator for row-major (0) or column-
major (1) storage for multidimensional
arrays.

0

DBOPT_ORIGIN integer Origin for arrays. Zero or one. 0

DBOPT_TIME real Problem time value. 0.0

DBOPT_UNITS character*(*) Character string defining the units associ-
ated with this variable.

DB_F77NULL

DBOPT_USESPECMF integer Boolean (DB_OFF or DB_ON) value
specifying whether or not to weight the
variable by the species mass fraction
when using material species data.

DB_OFF

dbputum

3-46 Silo User’s Guide

dbputum—Write an UCD mesh object into the open Silo file.

Synopsis:

integer function dbputum (dbid, name, lname, ndims, x, y, z,
xname, lxname, yname, lyname, zname, lzname,
datatype, nnodes, nzones, zlname, lzlname,
flname, lflname, optlist_id, id)

integer dbid, lname, lxname, lyname, lzname, datatype, nnodes
integer nzones, ndims, lzlname, lflname, optlist_id, id
real x(*), y(*), z(*)
character*(*) name, xname, yname, zname, zlname, flname

Arguments:

dbid Database identifier.

name Name of the mesh.

lname Length of thename parameter in characters.

ndims Number of dimensions.

x, y, z Arrays containing coordinate values. Ifndims is 2, thenz is ignored.

[xyz]name Name to associate with the corresponding [xyz] coordinate array.

l[xyz]name Length of the [xyz]name parameter in characters.

datatype Datatype of the coordinate arrays. One of the predefined Silo data types.

nnodes Number of nodes.

nzones Number of zones.

zlname Name of the zonelist structure associated with this variable (written with
dbputzl.) If no association is to be made, this value should be DB_F77NULL.

lzlname Length of thezlname parameter in characters.

flname Name of the facelist structure associated with this variable (written with
dbputfl.) If no association is to be made, this value should be DB_F77NULL.

lflname Length of theflname parameter in characters.

optlist_id Optionlist identifiercreatedwith dbmkoptlistandpopulatedwith dbadd*opt.If
no options are to be provided, use DB_F77NULL for this argument.

id Returned status value. This is zero on success and -1 on failure. (The use of
UCDmesh identifiers is no longer supported.)

Returns:

dbputum returns zero on success and -1 on failure.

Description:

The dbputum function accepts pointers to the coordinate arrays and is responsible for writing the
mesh into a UCD mesh object in the Silo file.

dbputum

Silo User’s Guide 3-47

A Silo UCD mesh object contains all necessary information for describing a mesh. This includes
the coordinate arrays, the rank of the mesh (1,2,3,...) and the type (collinear or non-collinear.) In
addition, other information is useful and is therefore included (time and cycle of mesh, plus coor-
dinate system type.)

Notes:

See the description of “dbcalcfl” on page 3-6 for an automated way of computing the facelist
needed for this call.

The order in which nodes are defined in the zonelist is important, especially for 3D cells. Nodes
defining a 2D cell should be supplied in either clockwise or counterclockwise order around the
cell. Nodes defining a 3D cell should be supplied in the order illustrated below:

Figure 3-2: Node ordering for UCD zone shapes.

0

4
7

4

1 3

3

6

2 2

0

5

3

1

4

5

2 3

1

2

10

0

Tetrahedron Pyramid

Prism Hexahedron

dbputum

3-48 Silo User’s Guide

Figure 3-3: Example usage of UCD zonelist and external facelist variables.

1 2 3

4 5 6

7 8 9

10 11 12

nnodes = 13
nzones = 3
nzshapes = 2
lznodelist = 2*8 + 1*5 = 21 zone nodes
nfaces = 13 external faces
nfshapes = 2 external face shapes
nftypes = 0
lfnodelist = 9*4 + 4*3 = 48 external face nodes

fnodelist = { 1,2,8,7 external face nodelist
2,3,9,8,
8,9,12,11,
5,6,12,11,...}

fshapesize = {4,3} external face shape sizes
fshapecnt = {9,4} external face shape counts

znodelist = { 1,4,5,2,7,10,11,8, zone nodelist
2,5,6,3,8,11,12,9,

zshapesize = {8,5} zone shape sizes
zshapecnt = {2,1} zone shape counts

x = {0,1,2,0,1,2,0,1,2,0,1,2,3}
y = {1,1,1,0,0,0,1,1,1,0,0,0,.5}

X

Y

Z

z = {1,1,1,1,1,1,0,0,0,0,0,0,.5}

fzoneno = {1,2,2,2,...}external face zone nos

13

13,3,6,12,9}

dbputum

Silo User’s Guide 3-49

The following table describes the options accepted by this function:

Option Name Value Data Type Option Meaning Default Value

DBOPT_GROUPNUM integer The group number to which this
UCDmesh belongs.

-1 (not in a group)

DBOPT_COORDSYS integer Coordinate system. One of:
DB_CARTESIAN,
DB_CYLINDRICAL,
DB_SPHERICAL,
DB_NUMERICAL, or DB_OTHER.

DB_OTHER

DBOPT_CYCLE integer Problem cycle value. 0

DBOPT_EDGELIST integer Object identifier for edgelist struc-
ture

0

DBOPT_FACETYPE integer Zone face type. One of the pre-
defined types: DB_RECTILINEAR
or DB_CURVILINEAR.

DB_RECTILINEAR

DBOPT_XLABEL character*(*) Character string defining the label
associated with the X dimension.

DB_F77NULL

DBOPT_YLABEL character*(*) Character string defining the label
associated with the Y dimension.

DB_F77NULL

DBOPT_ZLABEL character*(*) Character string defining the label
associated with the Z dimension.

DB_F77NULL

DBOPT_NSPACE integer Number of spatial dimensions used
by this mesh.

ndims

DBOPT_ORIGIN integer Origin for arrays. Zero or one. 0

DBOPT_PLANAR integer Planar value. One of: DB_AREA or
DB_VOLUME.

DB_NONE

DBOPT_TIME real Problem time value. 0.0

DBOPT_XUNITS character*(*) Character string defining the units
associated with the X dimension.

DB_F77NULL

DBOPT_YUNITS character*(*) Character string defining the units
associated with the Y dimension.

DB_F77NULL

DBOPT_ZUNITS character*(*) Character string defining the units
associated with the Z dimension.

DB_F77NULL

dbputuv1

3-50 Silo User’s Guide

dbputuv1—Write a scalar UCD variable object into the open Silo file.

Synopsis:

integer function dbputuv1 (dbid, name, lname, meshname, lmeshname,
var, nels, mixvar, mixlen, datatype,
centering, optlist_id, id)

integer dbid, lname, lmeshname, nels, mixlen, datatype
integer centering, optlist_id, id
character*(*) name, meshname
real var(*), mixvar(*)

Arguments:

dbid Database identifier.

name Name of the variable.

lname Length of thename parameter in characters.

meshname Name of the mesh associated with this variable (written with dbputum).

lmeshname Length of themeshname parameter in characters.

var Array of lengthnels containing the values associated with this variable.

nels Number of elements in this variable.

mixvar Array of lengthmixlen containing the mixed-data values associated with this
variable. Ifmixlen is zero, this value is ignored.

mixlen Length of themixvar array. If zero, no mixed data is present.

datatype Datatype of variable. One of the predefined Silo data types.

centering Centering of the sub-variables on the associated mesh. One of the predefined
types: DB_NODECENT or DB_ZONECENT.

optlist_id Optionlist identifiercreatedwith dbmkoptlistandpopulatedwith dbadd*opt.If
no options are to be provided, use DB_F77NULL for this argument.

id Returned status value. This is zero on success and -1 on failure. (The use of
UCDmesh variable identifiers is no longer supported.

Returns:

dbputuv1 returns zero on success and -1 on failure.

Description:

Thedbputuv1functionwritesascalarvariableassociatedwith anUCD meshinto aSilo file. Note
that variables will be either node-centered or zone-centered. A UCD variable object contains the
variablevalues,plustheobjectidentifierof theassociatedUCD mesh.Otherinformationcanalso
be included. This function is useful for writing scalar fields.

dbputuv1

Silo User’s Guide 3-51

The following table describes the options accepted by this function:

Option Name Value Data Type Option Meaning Default Value

DBOPT_COORDSYS integer Coordinate system. One of:
DB_CARTESIAN,
DB_CYLINDRICAL,
DB_SPHERICAL,
DB_NUMERICAL, or DB_OTHER.

DB_OTHER

DBOPT_CYCLE integer Problem cycle value. 0

DBOPT_LABEL character*(*) Character strings defining the label
associated with this variable.

DB_F77NULL

DBOPT_ORIGIN integer Origin for arrays. Zero or one. 0

DBOPT_TIME real Problem time value. 0.0

DBOPT_UNITS character*(*) Character string defining the units
associated with this variable.

DB_F77NULL

DBOPT_USESPECMF integer Boolean (DB_OFF or DB_ON)
value specifying whether or not to
weight the variable by the species
mass fraction when using material
species data.

DB_OFF

dbputzl

3-52 Silo User’s Guide

dbputzl—Write a zonelist object into a Silo file.

Synopsis:

integer function dbputzl (dbid, name, lname, nzones, ndims,
nodelist, lnodelist, origin, shapesize,
shapecnt, nshapes, idzl)

integer dbid, lname, nzones, ndims, lnodelist, origin, nshapes,
idzl

integer nodelist(*), shapesize(*), shapecnt(*)
character*(*) name

Arguments:

dbid Database identifier.

name Name to assign this structure within the file.

lname Length of the name parameter in characters.

nzones Number of zones in associated mesh.

ndims Number of spatial dimensions represented by associated mesh.

nodelist Array of lengthlnodelist containing node indices describing mesh zones.

lnodelist Length of thenodelist array.

origin Origin for indices in the nodelist array. Should be zero or one.

shapesize Array of lengthnshapes containing the number of nodes used by each zone
shape.

shapecnt Array of lengthnshapes containing the number of zones having each shape.

nshapes Number of zone shapes.

idzl Returned status value. This is zero on success and -1 on failure. (The use of
zonelist identifiers is no longer supported.)

Returns:

dbputzl returns zero on success and -1 on failure.

Description:

The dbputzl function writes a zonelist object into the open Silo file. The name assigned to this
object can in turn be used as thezonel_name parameter to the dbputum function.

Notes:

See the write-up of dbputum for a full description of the zonelist data structures.

dbrdvar

Silo User’s Guide 3-53

dbrdvar—Read a simple variable.

Synopsis:

integer function dbrdvar (dbid, varname, lvarname, result)

integer dbid, lvarname
character*(*) varname
real result(*)

Arguments:

dbid Database identifier.

varname Name of the simple variable

lvarname Length of thevarname parameter in characters.

result Pointerto memoryin whichsimplevariableshouldberead.It is up to theappli-
cation to provide sufficient space in which to read the variable.

Returns:

dbrdvar returns zero on success and -1 on failure.

Description:

The dbrdvar function reads a simple variable into the given space.

dbrdvarslice

3-54 Silo User’s Guide

dbrdvarslice—Read a (hyper)slab of data from a simple variable.

Synopsis:

integer function dbrdvarslice (dbid, varname, lvarname, offset,
length, stride, ndims, dims, result)

integer dbid, lvarname, ndims
integer offset(*), length(*), stride(*), dims(*)
character*(*) varname
real result(*)

Arguments:

dbid Database identifier.

varname Name of the simple variable.

lvarname Length of thevarname parameter in characters.

offset Array of lengthndims of offsetsin eachdimensionof theentirevariable.This
is 1-origin position from which to begin reading the slice.

length Array of lengthndims of lengths of data in each dimension to read from the
entire variable. All lengths must be positive.

stride Array of lengthndims of stride steps in each dimension. If no striding is
desired, zeroes should be passed in this array.

ndims Number of dimensions in the entire variable.

result Pointer to memory in which the slab of the variable should be read. It is up to
the application to provide sufficient space in which to read the variable.

Returns:

dbrdvarslice returns zero on success and -1 on failure.

Description:

The dbrdvarslice function reads a slab of data from a Silo variable into a location provided in the
result array. Any hyperslab of data may be read.

Note that the minimumlength value is 1 and the minimumstride value is zero.

A one-dimensional array slice:

Figure 3-4: Array slice

Offset = 6 Length = 12

Stride = 1

Offset = 6 Length = 12

Stride = 2

dbsetdir

Silo User’s Guide 3-55

dbsetdir—Set the current directory within the Silo database.

Synopsis:

integer function dbsetdir (dbid, pathname, lpathname)

integer dbid, lpathname
character*(*) pathname

Arguments:

dbid Database identifier.

pathname Pathname of the directory. This can be either an absolute or relative pathname.

lpathname Length of thepathname string.

Returns:

dbsetdir returns zero on success and -1 on failure.

Description:

The dbsetdir function sets the current directory within the given Silo database.

dbshowerrors

3-56 Silo User’s Guide

dbshowerrors—Set the error reporting mode.

Synopsis:

integer function dbshowerrors (level)

integer level

Arguments:

level Error reporting level. One of DB_ALL, DB_ABORT, DB_TOP, or DB_NONE.

Returns:

dbshowerrors always returns zero. It cannot fail.

Description:

The dbshowerrors function sets the level of error reporting done by Silo when it encounters an
error. The following table describes the action taken upon error for different values oflevel:

For more information, see “Error Handling” on page3-1.

Error level value Error action

DB_ALL Show all errors, beginning with the (possibly internal) routine
that first detected the error and continuing up the call stack
to the application.

DB_ABORT Same as DB_ALL except abort is called after the error mes-
sage is printed.

DB_TOP (Default) Only the top-level Silo functions issue error mes-
sages.

DB_NONE The library does not handle error messages. The application
is responsible for checking the return values of the Silo func-
tions and handling the error.

dbwrite

Silo User’s Guide 3-57

dbwrite—Write a simple variable.

Synopsis:

integer function dbwrite (dbid, varname, lvarname, var, dims,
ndims, datatype)

integer dbid, lvarname, ndims, datatype
integer dims(*)
character*(*) varname
real var(*)

Arguments:

dbid Database identifier.

varname Name of the simple variable.

lvarname Length of thevarname parameter in characters.

var Array defining the values associated with the variable.

dims array of lengthndims describing the dimensionality of the simple variable.
Eachvaluein thedims arrayindicatesthenumberof elementscontainedin the
variable along that dimension.

ndims Number of dimensions.

datatype Datatype of the variable. One of the predefined Silo data types.

Returns:

dbwrite returns zero on success and -1 on failure.

Description:

The dbwrite function writes a simple variable into a Silo file.

dbwriteslice

3-58 Silo User’s Guide

dbwriteslice—Read a (hyper)slab of data from a simple variable.

Synopsis:

integer function dbwriteslice (dbid, varname, lvarname, var,
datatype, offset, length, stride, ndims)

integer dbid, lvarname, ndims, datatype
integer offset(*), length(*), stride(*)
character*(*) varname
real var(*)

Arguments:

dbid Database identifier.

varname Name of the simlpe variable.

lvarname Length of thevarname parameter in characters.

var Array defining the values associated with the slab.

datatype Datatype of the variable. One of the predefined Silo data types.

offset Array of lengthndims of offsets in each dimension of the variable. This is 1-
origin position from which to begin reading the slice.

length Array of lengthndims of lengths of data in each dimension to read from the
variable. All lengths must be positive.

stride Array of lengthndims of stride steps in each dimension. If no striding is
desired, zeroes should be passed in this array.

dims Array of lengthndimswhichdescribesthedimensionalityof theentirevariable.
Each value in the dims array indicates the number of elements contained in the
entire variable along that dimension.

ndims Number of dimensions in the variable.

Returns:

dbwriteslice returns zero on success and -1 on failure.

Description:

The dbwriteslice function writes a slab of data to a simple variable from the data provided in the
var array. Any hyperslab of data may be read.

The size of the entire variable (after all slabs have been written) must be known when the
dbwriteslice function is called. The data in thevar parameter is written into the entire variable
using the location specified in theoffset, length, andstride parameters. The data that
makes up the entire variable may be written with one or more calls to dbwriteslice.

Note that the minimumlength value is 1 and the minimumstride value is zero.

dbwriteslice

Silo User’s Guide 3-59

A one-dimensional array slice:

Figure 3-5: Array slice

Offset = 6 Length = 12

Stride = 1

Offset = 6 Length = 12

Stride = 2

dbwriteslice

3-60 Silo User’s Guide

Silo User’s Guide A-1

Appendix A Data Structures

A.1 C Data Structures

A.1.1 Compound Arra y Definition

typedef struct {
 int id; /* identifier of the compound array */
 char *name; /* name of the compound array */
 char **elemnames; /* names of the simple array elements */
 int *elemlengths; /* lengths of the simple arrays */
 int nelems; /* number of simple arrays */
 void *values; /* simple array values */
 int nvalues; /* sum reduction of `elemlengths’ vector */
 int datatype; /* simple array element data type */

} DBcompoundarray;

A.1.2 Curve Definition

typedef struct {
/*----------- X vs. Y (Curve) Data -----------*/
int id; /* Identifier for this object */
int datatype; /* Datatype for x and y (float, double) */
int origin; /* ‘0’ or ‘1’ */
char *title; /* Title for curve */
char *xvarname; /* Name of domain (x) variable */
char *yvarname; /* Name of range (y) variable */
char *xlabel; /* Label for x-axis */
char *ylabel; /* Label for y-axis */
char *xunits; /* Units for domain */
char *yunits; /* Units for range */
float *x; /* Domain values for curve */
float *y; /* Range values for curve */

Data Structures

A-2 Silo User’s Guide

int npts; /* Number of points in curve */
} DBcurve;

A.1.3 Material Data Definition

typedef struct {
/*----------- Material Information -----------*/
int id; /* Identifier */
char *name; /* Name of this material information data */
int ndims; /* Rank of ‘matlist’ variable */
int origin; /* ‘0’ or ‘1’ */
int dims[3]; /* Number of elements in each dimension */
int major_order; /* Use DB_ROWMAJOR to indicate row-major

for multi-d arrays. Use DB_COLMAJOR to
indicate column-major for multi-d array.s */

int stride[3]; /* Offsets to adjacent elements in matlist*/
int nmat; /* Number of materials */
int *matnos; /* Array [nmat] of valid material numbers */
char **matnames; /* Arry of material names */
int *matlist; /* Array [nzone] with mat. number or mix index */
int mixlen; /* Length of mixed data arrays (mix_xxx) */
int datatype; /* Datatype of volume-fractions (double,float) */
float *mix_vf; /* Array [mixlen] of volume fractions */
int *mix_next; /* Array [mixlen] of mixed data indices */
int *mix_mat; /* Array [mixlen] of material numbers */
int *mix_zone; /* Array [mixlen] of back pointers to mesh */

} DBmaterial;

A.1.4 Material Species Data Definition

typedef struct {
/*----------- Species Information -----------*/
int id; /* Identifier */
char *name; /* Name of this material species information block */
char *matname; /* Name of material object with which the material

species object is associated */
int nmat; /* Number of materials */
int *nmatspec; /* Array [nmat] of the number of material species

associated with each material */
int ndims; /* Rank of ‘speclist’ variable */
int dims[3]; /* Number of elements in each dimension of the ‘spe-

clist’ variable */
int major_order; /* Use DB_ROWMAJOR to indicate row-major

for multi-d arrays. Use DB_COLMAJOR to
indicate column-major for multi-d array.s */

int stride[3]; /* Offsets to adjacent elements in ‘speclist’ */
int nspecies_mf; /* Total number of species mass fractions */
float *species_mf; /* Array [nspecies_mf] of mass fractions of material

species */

Data Structures

Silo User’s Guide A-3

int *speclist; /* Zone array of dimensions described by ndims and
dims. If the zone is clean, this array element will be a
positive index into the species_mf array. If the zone is
mixed, then this value is ignored. */

int mixlen; /* Length of ‘mix_speclist’ array */
int *mix_speclist; /* Array [mixlen] of 1-origin indices into the

‘species_mf’ array. mix_speclist[j] is the index in
array ‘species_mf’ of the first of the mass fractions
for material mix_mat[j] in zone mix_zone[j]*/

int datatype; /* Datatype of mass fraction data */
} DBmatspecies;

A.1.5 Point Variable Definition

typedef struct {
/*----------- Point Variable -----------*/
int id; /* Identifier for this object */
char *name; /* Name of variable */
char *units; /* Units for variable, e.g, ‘mm/ms’ */
char *label; /* Label (perhaps for editing purposes) */
int cycle; /* Problem cycle number */
float time; /* Problem time */
double dtime; /* Problem time, double data type */
int meshid; /* Identifier for associated mesh */
float **vals; /* Array of pointers to data arrays */
int datatype; /* Type of data pointed to by ‘val’ */
int nels; /* Number of elements in each array */
int nvals; /* Number of arrays pointed to by ‘vals’ */
int nspace; /* Spatial rank of variable */
int ndims; /* Rank of ‘vals’ array(s) (computational rank) */
int origin; /* ‘0’ or ‘1’ */
int centering; /* Centering within mesh (nodal, zonal, other) */
float align[3]; /* Alignment per dimension if centering==other*/
int dims[3]; /* Number of elements in each dimension */
int major_order; /* Use DB_ROWMAJOR to indicate row-major

for multi-d arrays. Use DB_COLMAJOR to
indicate column-major for multi-d array.s */

int stride[3]; /* Offsets to adjacent elements */
int min_index[3]; /* Index in each dimension of 1st non-phoney */
int max_index[3]; /* Index in each dimension of last non-phoney*/

} DBmeshvar;

A.1.6 Multi-Block Mesh Definition

typedef struct {
/*----------- Multi-Block Mesh -----------*/
int id; /* Identifier for this object */
int nblocks; /* Number of blocks in mesh */
int ngroups; /* Number of groups in mesh */
int *meshids; /* Array of mesh-id’s which comprise this mesh */

Data Structures

A-4 Silo User’s Guide

char **meshnames; /* Array of mesh-names corresponding to meshids */
int *meshtypes; /* Array of mesh-type indicators [nblocks] */
int *dirids; /* Array of directory ID’s which contain block */
int blockorigin; /* Origin (0 or 1) of block numbers */
int grouporigin; /* Origin (0 or 1) of group numbers */

} DBmultimesh;

A.1.7 Multi-Block Material Definition

typedef struct {
/*----------- Multi-Block Variable -----------*/
int id; /* Identifier for this object */
int nmats; /* Number of materials */
int ngroups; /* Number of groups in mesh */
char **matnames; /* Material names */
int blockorigin; /* Origin (0 or 1) of block numbers */
int grouporigin; /* Origin (0 or 1) of group numbers */

} DBmultimat;

A.1.8 Multi-Block Variable Definition

typedef struct {
/*----------- Multi-Block Variable -----------*/
int id; /* Identifier for this object */
int nvars; /* Number of variables*/
int ngroups; /* Number of groups in mesh */
char **varnames; /* Variable names */
int *vartypes; /* Variable types */
int blockorigin; /* Origin (0 or 1) of block numbers */
int grouporigin; /* Origin (0 or 1) of group numbers */

} DBmultivar;

A.1.9 Multi-Block Species Definition

typedef struct {
/*----------- Multi-Block Variable -----------*/
int id; /* Identifier for this object */
int nspec; /* Number of species objects */
int ngroups; /* Number of groups in mesh */
char **specnames; /* Names of species objects */
int blockorigin; /* Origin (0 or 1) of block numbers */
int grouporigin; /* Origin (0 or 1) of group numbers */

} DBmultimatspecies;

A.1.10 Optlist Definition

typedef struct {
/* Option structure for some of the C Silo functions */
int *options; /* Array of option identifiers (see Table above) */
void **values; /* Array of pointers to option values*/

Data Structures

Silo User’s Guide A-5

int numopts; /* Number of options in use */
int maxopts; /* Maximum number of options

(i.e., length of arrays) */
} DBoptlist;

A.1.11 Point Mesh Definition

typedef struct {
/*----------- Point Mesh-----------*/
int id; /* Identifier for this object */
int block_no; /* Block number for this mesh */
int group_no; /* Group number for this mesh */
char *name; /* Name associated with mesh */
int cycle; /* Problem cycle number */
float time; /* Problem time */
double dtime; /* Problem time, double data type */
char *units[3]; /* Units for variable, e.g, ‘mm/ms’ */
char *labels[3]; /* Label associated with each dimension */
char *title; /* Title for curve */
float *coords[3]; /* Mesh node coordinates */
float min_extents[3]; /* Min mesh extents [ndims] */
float max_extents[3]; /* Max mesh extents [ndims] */
int datatype; /* Datatype of coordinate arrays (double,float) */
int ndims; /* Number of computational dimensions */
int nels; /* Total number of elements (points) in mesh*/
int origin; /* ‘0’ or ‘1’ */

} DBpointmesh;

A.1.12 Quad Mesh Definition

typedef struct {
/*----------- Quad Mesh -----------*/
int id; /* Identifier for this object */
int block_no; /* Block number for this mesh */
int group_no; /* Group number for this mesh */
char *name; /* Name associated with mesh */
int cycle; /* Problem cycle number */
float time; /* Problem time */
double dtime; /* Problem time, double date type*/
int coord_sys; /* Cartesian, cylindrical, spherical */
int major_order; /* Use DB_ROWMAJOR to indicate row-major

for multi-d arrays. Use DB_COLMAJOR to
indicate column-major for multi-d array.s */

int stride[3]; /* Offsets to adjacent elements */
int coordtype; /* Coord array type: collinear, non-collinear */
int facetype; /* Zone face type: rect, curv */
int planar; /* Sentinel: zones represent area or volume? */
float *coords[3]; /* Mesh node coordinate ptrs [ndims] */
int datatype; /* Datatype of coordinate arrays (double,float) */
float min_extents[3]; /* Min mesh extents [ndims] */

Data Structures

A-6 Silo User’s Guide

float max_extents[3]; /* Max mesh extents [ndims] */
char *labels[3]; /* Label associated with each dimension */
char *units[3]; /* Units for variable, e.g, ‘mm/ms’ */
int ndims; /* Number of computational dimensions */
int nspace; /* Number of physical dimensions */
int nnodes; /* Total number of nodes */
int dims[3]; /* Number of nodes per dimension */
int origin; /* ‘0’ or ‘1’ */
int min_index[3]; /* Index in each dimension of first non-phoney */
int max_index[3]; /* Index in each dimension of last non-phoney */
int base_index[3]; /* Lowest real i,j,k value for this block */
int start_index[3]; /* i,j,k values corresponding to the original mesh */
int size_index[3]; /* # of nodes per dimension for original mesh */

} DBquadmesh;

A.1.13 Quad Variable Definition

typedef struct {
/*----------- Quad Variable -----------*/
int id; /* Identifier for this object */
char *name; /* Name of variable */
char *units; /* Units for variable, e.g, ‘mm/ms’ */
char *label; /* Label (perhaps for editing purposes) */
int cycle; /* Problem cycle number */
float time; /* Problem time */
double dtime; /* Problem time, double data type */
int meshid; /* Identifier for associated mesh */
float **vals; /* Array of pointers to data arrays */
int datatype; /* Type of data pointed to by ‘val’ */
int nels; /* Number of elements in each array */
int nvals; /* Number of arrays pointed to by ‘vals’ */
int ndims; /* Rank of variable */
int dims[3]; /* Number of elements in each dimension */
int major_order; /* Use DB_ROWMAJOR to indicate row-major

for multi-d arrays. Use DB_COLMAJOR to
indicate column-major for multi-d array.s */

int stride[3]; /* Offsets to adjacent elements */
int min_index[3]; /* Index in each dimension of first non-phoney */
int max_index[3]; /* Index in each dimension of last non-phoney */
int origin; /* ‘0’ or ‘1’ */
float align[3]; /* Centering and alignment per dimension */
float **mixvals; /* nvals pointers to data arrays for mixed zones */
int mixlen; /* Number of elements in each mixed zone data array

*/
int use_specmf; /* Flag indicating whether to apply species mass frac-

tions to the variable. */
int ascii_labels; /* Treat variable values as ASCII values by rounding to

the nearest integer in the range [0, 255] */
} DBquadvar;

Data Structures

Silo User’s Guide A-7

A.1.14 Table of Contents Definiton

typedef struct {
char **curve_names /* Array [ncurve] of pointers to curve names */
int ncurve /* Number of curves */
char **multimesh_names /* Array [nmultimesh] of pointers to multimesh names

*/
int nmultimesh /* Number of multimeshes */
char **multivar_names /* Array [nmultivar] of pointers to multi-variable

names */
int nmultivar /* Number of multi-variables */
char **multimat_names /* Array [nmultimat] of pointers to multi-material

names */
int nmultimat /* Number of multi-variables */
char **multimatspecies_names/* Array [nmultimatspecies] of pointers to multi-

species names */
int nmultimatspecies /* Number of multi-species */
char **qmesh_names /* Array [nqmesh] of pointers to quadmesh names */
int nqmesh /* Number of quadmeshes */
char **qvar_names /* Array [nqvar] of pointers to quadmesh variable

names */
int nqvar /* Number of quadmesh variables */
char **ucdmesh_names /* Array [nucdmesh] of pointers to ucdmesh names */
int nucdmesh /* Number of ucdmeshes */
char **ucdvar_names /* Array [nucdvar] of pointers to ucdmesh variable

names */
int nucdvar /* Number of ucdmesh variables */
char **ptmesh_names /* Array [nptmesh] of pointers to pointmesh names */
int nptmesh /* Number of pointmeshes */
char **ptvar_names /* Array [nptvar] of pointers to pointmesh variable

names */
int nptvar /* Number of pointmesh variables */
char **mat_names /* Array [nmat] of pointers to materialnames */
int nmat /* Number of materials */
char **matspecies_names /* Array [nmatspecies] of pointers to material species

names */
int nmatspecies /* Number of material species */
char **var_names /* Array [nvar] of pointers to variable names */
int nvar /* Number of variables */
char **obj_names /* Array [nobj] of pointers to object names */
int nobj /* Number of objects */
char **dir_names /* Array [ndir] of pointers to subdirectory names */
int ndir /* Number of subdirectories */
char **array_names /* Array [narrays] of pointers to array names */
int narrays /* Number of arrays */

} DBtoc;

A.1.15 UCD Mesh Definition

typedef struct {

Data Structures

A-8 Silo User’s Guide

/*----------- Unstructured Cell Data (UCD) Mesh -----------*/
int id; /* Identifier for this object */
int block_no; /* Block number for this mesh */
int group_no; /* Group number for this mesh */
char *name; /* Name associated with mesh */
int cycle; /* Problem cycle number */
float time; /* Problem time */
double dtime; /* Problem time, double data type */
int coord_sys; /* Coordinate system */
char *units[3]; /* Units for variable, e.g, ‘mm/ms’ */
char *labels[3]; /* Label associated with each dimension */
float *coords[3]; /* Mesh node coordinates */
int datatype; /* Datatype of coordinate arrays (double,float) */
float min_extents[3]; /* Min mesh extents [ndims] */
float max_extents[3]; /* Max mesh extents [ndims] */
int ndims; /* Number of computational dimensions */
int nnodes; /* Total number of nodes */
int origin; /* ‘0’ or ‘1’ */
DBfacelist *faces; /* Data structure describing mesh faces */
DBzonelist *zones; /* Data structure describing mesh zones */
DBedgelist *edges; /* Data structure describing mesh edges (optional) */

/* -------------- Optional node attributes -------------- */
int *nodeno /* [nnodes] Node number of each node */
int *gnodeno /* [nnodes] Global node number of each node */

} DBucdmesh;

A.1.16 UCD Variable Definition

typedef struct {
/*----------- Unstructured Cell Data (UCD) Variable -----------*/
int id; /* Identifier for this object */
char *name; /* Name of variable */
int cycle; /* Problem cycle number */
char *units; /* Units for variable, e.g, ‘mm/ms’ */
char *label; /* Label (perhaps for editing purposes) */
float time; /* Problem time */
double dtime; /* Problem time, double data type */
int meshid; /* Identifier for associated mesh */
float **vals; /* Array of pointers to data arrays */
int datatype; /* Type of data pointed to by ‘vals’ */
int nels; /* Number of elements in each array */
int nvals; /* Number of arrays pointed to by ‘vals’ */
int ndims; /* Rank of variable */
int origin; /* ‘0’ or ‘1’ */
int centering; /* Centering within mesh (nodal or zonal) */
float **mixvals; /* nvals pointers to data arrays for mixed zones */
int mixlen; /* Number of elements in each mixed zone data array

*/
int use_specmf; /* Flag indicating whether to apply species mass frac-

tions to the variable. */

Data Structures

Silo User’s Guide A-9

int ascii_labels; /* Treat variable values as ASCII values by rounding to
the nearest integer in the range [0, 255] */

} DBucdvar;

A.1.17 UCD Edgelist Definition

typedef struct {
int ndims; /* Number of dimensions (2,3) */
int nedges; /* Number of edges */
int *edge_beg; /* [nedges] */
int *edge_end; /* [nedges] */
int origin; /* ‘0’ or ‘1’ */

} DBedgelist;

A.1.18 UCD Facelist Definition

typedef struct {
/*----------- Required components ------------*/
int ndims; /* Number of dimensions (2,3) */
int nfaces; /* Number of faces in list */
int origin; /* ‘0’ or ‘1’ */
int *nodelist; /* Sequential list of nodes which comprise faces */
int lnodelist; /* Number of nodes in nodelist */

/*----------- 3D components ------------------*/
int nshapes; /* Number of face shapes */
int *shapecnt; /* [nshapes] Number of occurences of each shape */
int *shapesize; /* [nshapes] Number of nodes per shape */

/*----------- Optional type component---------*/
int ntypes; /* Number of face types */
int *typelist; /* [ntypes] Type ID for each type */
int *types; /* [nfaces] Type info for each face */

/*--------- Optional zone-reference component -------*/
int *nodeno; /* [lnodelist] node number of each node */
int *zoneno; /* [nfaces] Zone number for each face */

} DBfacelist;

A.1.19 UCD Zonelist Definition

typedef struct {
int ndims; /* Number of dimensions (2,3) */
int nzones; /* Number of zones in list */
int nshapes; /* Number of zone shapes */
int *shapecnt; /* [nshapes] Number of occurences of each shape */
int *shapesize; /* [nshapes] Number of nodes per shape */
int *shapetype; /* [nshapes] Type of shape */
int *nodelist; /* Sequential list of nodes which comprise zones */
int lnodelist; /* Number of nodes in nodelist */
int origin; /* ‘0’ or ‘1’ */
int min_index; /* Index of first real zone */
int max_index; /* Index of last real zone */

Data Structures

A-10 Silo User’s Guide

/* -------------- Optional zone attributes --------------- */
int *nodeno /* [nnodes] Node number of each node */
int *gnodeno /* [nnodes] Global node number of each node */

} DBzonelist;

Silo User’s Guide G-1

Glossary

Block Also known as a mesh-block. This is the fundamental building block of a
computational mesh. It defines the nodal coordinates of one contiguous
section of a mesh.

Curve X versus Y data. This object contains the domain and range values, along
with the number of points in the curve. In addition, a title, variable names,
labels, and units may be provided.

Facelist Face-oriented connectivity information for a UCD mesh. This object con-
tains a sequential list of nodes which identifies the faces in the mesh, and
arrays which describe the shape(s) of the faces in the mesh. It may option-
ally include arrays which provide type information for each face.

Group A collection of blocks. Blocks within a group are usually structured
meshes which can be logically indexed as though they comprised a single,
larger block.

Material A physical material being modeled in a computer simulation. This
includes the number of materials present, a list of valid material identifi-
ers, and a zonal-length array which contains the material identifiers for
each zone.

Material species Extra material information. A material species is a type of a material.
They are used when a given material (i.e. air) may be made up of other
materials (i.e. oxygen, nitrogen) in differing amounts.

Mesh A computational mesh, composed of one or more mesh-blocks. A mesh
can be composed of mesh-blocks of different types (quad, UCD) as well
as of different shapes.

Multimat A set of materials. This object contains the names of the materials in the
set.

Multimesh A set of meshes. This object contains the names of and types of the
meshes in the set.

G-2 Silo User’s Guide

Multivar Mesh variable data associated with a multimesh.

Node A mathematical point. The fundamental building-block of a mesh or zone.

Pointmesh A point mesh. This includes dimension and coordinate data.

Quadmesh A quadrilateral mesh. This includes the dimension and coordinate data,
but typically also includes the mesh’s coordinate system, labelling and
unit information, minimum and maximum extents, and valid index
ranges.

Quadvar A variable associated with a quadrilateral mesh. This includes the vari-
able’s data, centering information (node-centered vs. zone centered), and
the name of the quad mesh with which this variable is associated. Addi-
tional information, such as time, cycle, units, label, and index ranges can
also be included.

UCD Unstructured cell data is a term commonly used to denote an arbitrarily
connected mesh. Such a mesh is composed of vectors of coordinate val-
ues along with an index array which identifies the nodes associated with
each zone and/or face. Zones may contain any number of nodes for 2-D
meshes, and either four, five, six, or eight nodes for 3-D meshes.

Ucdmesh An unstructured mesh. This includes the dimension, connectivity, and
coordinate data, but typically also includes the mesh’s coordinate system,
labelling and unit information, minimum and maximum extents, and a list
of face indices.

Ucdvar A variable associated with a UCD mesh. This includes the variable’s data,
centering information (node-centered vs. zone-centered), and the name of
the UCD mesh with which this variable is associated. Additional informa-
tion, such as time, cycle, units, and label can also be included.

Variable Array data. This object contains, in addition to the data, the dimensions
and data type of the array. This object is not required to be (but usually is)
associated with a mesh.

Zone An area or volume from which meshes are comprised. Zones are poly-
gons or polyhedra with nodes as vertices.

Zonelist Zone-oriented connectivity information for a UCD mesh. This object con-
tains a sequential list of nodes which identifies the zones in the mesh, and
arrays which describe the shape(s) of the zones in the mesh.

