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SUMMARY

Two multilevel schemes for solving inequality constrained �nite element second-order elliptic problems,
such as the Signorini’s contact problem, are proposed and studied. The main ingredients of the schemes
are that �rst they utilize element agglomeration coarsening away from the constraint set (boundary),
which allows for easy construction of coarse level approximations that straightforwardly satisfy the �ne-
grid constraints. Second important feature of the schemes is that they provide monotone reduction of
the energy functional throughout the multilevel cycles. This is achieved by using monotone smoothers
(such as the projected Gauss–Seidel method) and due to the fact that the recursive application of the
two-grid schemes is also monotone. The performance of the resulting methods is illustrated by numerical
experiments on a model 2D Signorini’s problem. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The solution of �nite element second-order elliptic problems with inequality constraints is
the topic of the present paper. This problem is closely related and is a natural extension
of the solution of linear (unconstrained) second-order �nite element problems. For the latter
class of problems e�cient multigrid methods exist for geometrically re�ned meshes as well
as algebraic multigrid methods (AMG) suitable for unstructured meshes. For AMG, see, e.g.
References [1, 2], and the long list of references in Reference [3]. Extensions of multigrid
methods to inequality constrained problems are found as early as in Reference [4]. They
considered extensions of FAS multilevel solvers applied to the linear complementarity prob-
lems arising from free boundary problems. The di�erence between the linear complementarity
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problem and the contact (Signorini’s) problem, the latter we target in the present paper, is in
the constrained set. Whereas in the former (considered in Reference [4], see also Reference
[5]) it is the whole set of indices, for the contact problem the constrained set involves degrees
of freedom associated with a certain boundary C. That is, the dimension of the constrained
set of degrees of freedom is O(h−(d−1)) for contact problem, versus O(h−d) for linear comple-
mentarity problems, that is, one dimension less. Here d=2 or d=3 is the dimension of the
problem domain � where the second order elliptic pde is posed, and h �→ 0 is the mesh-size.
Mathematically, the problem under consideration can be stated as a quadratic functional

constrained minimization problem. One seeks a function u from a �nite element space V which
minimizes the quadratic functional J (u)= 1

2a(u; u)−(f; u) subject to u∈K={v∈V : v(x)6g(x)
for all x∈C}.
Here a(u; v)=

∫
� k(x)∇u · ∇v dx is a model second-order elliptic bilinear form, � is a

polygonal domain (or R3 polytope) covered exactly by the elements T from a given �nite
element triangulation Th. To be speci�c, the space V is a conforming, Lagrangian �nite
element space of piecewise linear basis functions. In practice, the convex set K is considered
consisting of all vectors v=(vi) such that for degrees of freedom xi∈C satisfy vi6gi. Here,
g=(gi) is a given vector de�ned for indices from C. One can relate the contact problems to
linear complementarity problem, by considering a reduced form of the contact problem. This
reduced problem involves vectors of size of the constrained set C. That is, then all degrees of
freedom of the reduced problem are constrained, which is the case in linear complementarity
problems. In a matrix–vector form the above problem reads

J (v)= 1
2 v

TAv − bTv �→ min; v∈Rn (1)

subject to the inequality constraints

vi6gi for all i∈�
Here � is a given subset of the index set {0; 1; 2; : : : ; n − 1} and g=(gi) is a given vector
de�ned for indices in �. Finally, A is a given symmetric positive de�nite matrix, the sti�ness
matrix corresponding to the given bilinear form a(: ; :) and the �nite element space V =Vh.
In the present paper we modify the element agglomeration AMGe method from Reference

[6] (which is a special version of Reference [7]) to de�ne a sequence of coarse approxima-
tions to the model �nite element contact problem formulated above. The main feature of the
modi�cation is that the coarse �nite element spaces utilize elements (agglomerates of �ne-
grid elements) which are coarse away from the contact boundary C. That is, the degrees of
freedom on C stay on all coarse grids, which allows for a straightforward transfer of data
between the grids without violating the inequality constraints.
On the basis of the coarsened away algebraically constructed coarse �nite element spaces,

we are able to formulate two multilevel schemes to solve the �ne-grid constrained minimiza-
tion contact problem. Our �rst method is based on the classical FAS [8] and is very similar to
the projected full approximation method (FPAS) from Reference [4]. With our construction of
the coarse spaces we are able to prove that our FAS as well as a related multilevel subspace
minimization algorithm are monotone. This is possible for smoothers which are monotone
(such as the projected Gauss–Seidel method), that is, smoothers that decrease the energy
functional monotonically. The proposed extension of the AMGe method can be applied to
bodies with complex geometry.
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Geometric multigrid methods for solving constrained minimization problems that are mono-
tone are found in References [9–11]. There is a variety of conventional methods developed
for the solution of the Signorini’s problem. Those methods (similar to conventional methods
applied to linear second-order �nite element elliptic equations) exhibit convergence that deteri-
orates as the mesh size h �→ 0. We can mention methods based on active set strategies [12–14]
where one alternates between approximating the contact set and solving a linear problem with
�xed contact set. The conventional methods can be used as coarse-grid solvers and those that
are monotone are suitable for smoothing in a multilevel scheme. Other class of methods is
the penalty methods [15–17] where one ends up with an unconstrained minimization prob-
lem for a functional which depends on a penalty parameter. In general, the thus obtained
solution is only an approximation to the problem of interest. Other methods that can have a
proven mesh independent convergence are the so-called projection methods (cf. References
[17, 18]). Roughly speaking these methods are based on an iterative process applied to the
related linear (unconstrained) problem and after every iteration the current intermediate iterate
is projected onto the constrained set. To achieve good convergence e�cient preconditioning
is needed for the (unconstrained) linear problem. Typically, the projection methods lead to
an inner–outer process which involves (approximate) evaluation of the projection [18]. This
is a viable approach that is left for further research.
The remainder of the paper is organized as follows. We begin with a general two-grid

iteration scheme, which under certain condition is proved to be monotone. This is found in
Section 2. The speci�c element agglomeration coarsening procedure is introduced in Section 3.
A recursive application of the two-level method is discussed in the following two sections
where the Multilevel Subspace Minimization Algorithm and the FAS Constrained Optimization
Algorithm are summarized, respectively, in Sections 4 and 5. Finally, numerical experiments
for a model 2D Signorini’s problem are presented in Section 6 and some conclusions are
drawn at the end.

2. A MONOTONE TWO-GRID SCHEME

To de�ne a two-grid scheme we need a coarse space and a smoothing procedure. The coarse
space we will consider will satisfy an important (special) property. The smoothing procedure
will be monotone (to be described in what follows).
Consider a coarse space VH ⊂V =Vh and let P be an interpolation matrix that transfers the

coarse coe�cient vector vc of a function vH ∈VH to a �ne-grid coe�cient vector v=Pvc of
vH now as an element of V . Our main assumption is that

P=
[
Pfc
I

]

that is, the values of vc at coarse degrees of freedom (dofs) are interpolated as identity on the
�ne grid. We also assume that constrained dofs xi∈C (or equivalently i∈�) are all present
on the coarse grid. This implies that

Pvc|�=vc|� (2)

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:189–204
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2.1. Projected Gauss–Seidel

We next describe the projected Gauss–Seidel method. Mathematically, it can be described as
a sequence of one-dimensional minimization problems. Consider the functional J (v). Given
a current iterate v=(vi) which satis�es the constraints, one varies only a single component
vi (the remaining ones vj, j �= i are kept �xed). This leads to a scalar quadratic function
’(vi)=J (viei+v0) where v0=

∑
j �=i vjej, and {ei} are the unit co-ordinate vectors. If i∈� then

we have to satisfy the constraint vi6gi. Thus we obtain a problem of �nding the minimum of
a quadratic function subject to a simple inequality constraint, that is, with x=vi, a=eTi Aei¿0,
b=eTi (b− Av0), a constant c and d=gi, we have to solve

’(x)= 1
2ax

2 − bx + c �→ min

subject to

x6d

The solution is x=b=a if b=a6d, or x=d otherwise. The new iterate then is v := v0 + viei
with vi=x. After a loop over all indices i one completes the projected Gauss–Seidel cycle.
This procedure used iteratively is referred to as the Projected Gauss–Seidel method. One can
also develop block-versions of this method (see Reference [16]) or even using overlapping
blocks, by solving small dimensional constrained minimization problems for every block. An
important property of the projected Gauss–Seidel is that every intermediate iterate decreases
the functional, and hence after a complete cycle one has that J (v)6J (vinitial), that is, it is a
monotone method.

2.2. Coarse-grid solve

Let vm−1, m¿1, be a current iterate for solving our �ne-grid problem (1). After performing
a few steps of the projected Gauss–Seidel (or any other monotone smoothing scheme) we
end up with an intermediate iterate vm−1=2=(vm−1=2i ) which satis�es the constraints vm−1=2i 6gi,
i∈�, and we also have

J (vm−1=2)6J (vm−1)

The next iterate vm is sought as vm=vm−1=2 + PCyC where yC is a coarse-grid vector such
that the resulting coarse-grid energy functional is minimized. More speci�cally, since � is a
subset of the set of coarse-grid degrees of freedom, one can solve the following coarse-grid
minimization problem:
Find yC such that

1
2 (v

m−1=2 + PyC)TA(vm−1=2 + PyC)− bT(vm−1=2 + PyC) �→ min (3)

subject to the constraints (yC)i6gi − vm−1=2i for i∈�.
Let AC=PTAP and bC=PT(b − Avm−1=2). Then (3) is equivalent to the following coarse

quadratic constrained minimization problem:

JC(yC)= 1
2y
T
CACyC − bTCyC �→ min

subject to the inequality constraints

(yC)i6gi − (vm−1=2)i for all i∈�
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We summarize the two-grid iteration method:

Algorithm 2.1 (Two-grid minimization method): Given an iterate vm−1, compute the next it-
erate vm performing the following steps:

Step 1: vm−1=2=vm−1 + ỹ1 + ỹ2 + · · · + ỹn. Here ỹi, 16i6n, are corrections spanned by
the unit co-ordinate vectors ei, produced by the Projected Gauss–Seidel algorithm with initial
approximation vm−1.
Step 2: vm=vm−1=2 +PyC. Here yC∈VC—the coarse-grid vector space, solves the quadratic

minimization problem,

JC(yC)= 1
2y
T
CACyC − bTCyC �→ min

subject to the inequality constraints

(yC)i6gi − (vm−1=2)i for all i∈�

The following main result holds.

Theorem 2.2
Algorithm 2.1 provides a monotone scheme, i.e. for any two consecutive iterates, vm−1 and
vm, produced by the algorithm we have

J (vm)6J (vm−1)

Proof
Given the iterate vm−1 and applying the Projected Gauss–Seidel algorithm in Step 1 we get
a new intermediate iterate vm−1=2 for which we have:

(1) The new intermediate iterate satis�es the inequality constraints due to the projection
operation in the Projected Gauss–Seidel algorithm:

(vm−1=2)i6gi for all i∈� (4)

(2) The value of the functional at the new intermediate iterate is less than one at the
previous one because the Projected Gauss–Seidel algorithm provides a monotone scheme

J (vm−1=2)6J (vm−1)

At the next step, we seek for a correction yC∈VC such that

(vm−1=2 + PyC)i6gi for all i∈�

and

J (vm−1=2 + PyC)6J (vm−1=2)

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:189–204
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We simplify the expression

J (vm−1=2 + PyC)
= 1

2(v
m−1=2)TAvm−1=2 + 1

2 y
T
CP

TAPyC + yTCP
TAvm−1=2 − bT(vm−1=2 + PyC)

= J (vm−1=2) + JC(yC) (5)

It is clear that it is equivalent to solve the coarse grid constraint minimization problem

JC(yC) ≡ 1
2 y

T
CACyC − bTCyC �→ min

subject to

(yC)i6gi − (vm−1=2)i for all i∈�
Note that we used the fact that the constraints are exactly present on the coarse level by our
assumption on P, namely, that, (PyC)|�=yC|�. It is clear then that if we choose the correction
yC=y

opt
C where yoptC is the solution of the above constraint minimization problem we have that

J (vm−1=2 + PyoptC )6J (v
m−1=2) (6)

The latter is true since one may choose yC=0 and satisfy the constraints due to inequality
(4). We then have

JC(y
opt
C )6JC(0)=0

Therefore, from (5) we have JC(y
opt
C )=J (v

m−1=2 +PyoptC )− J (vm−1=2) which implies (6). Thus
from (2.2) and (6) since vm=vm−1=2 + PyoptC the proof is complete, i.e. one has,

J (vm)6J (vm−1=2)6J (vm−1)

3. COARSENING AWAY FROM THE CONTACT BOUNDARY

We generate coarse spaces Vk; k=0; : : : ; ‘, where V0=V is the original �ne-grid space by
element agglomeration. Here we use the fact that the problem under consideration comes
from a �nite element discretization. Hence, one has access to elements and their topology (on
the �ne grid). Agglomeration algorithms were proposed in Reference [6]. They utilize certain
element topological relations and create the same relations on coarse levels recursively. Details
about speci�c implementation of the algorithms can be found in Reference [19]. Here we use
a modi�cation of the agglomeration algorithm in a way that dof associated with the constraint
boundary C are not coarsened. The original agglomeration algorithm from Reference [6]
allowed for barriers, that is, some faces of elements are labelled as unacceptable and the
elements that share such faces are kept on coarse levels (without being agglomerated with
other elements). A principal step of the thus modi�ed algorithm is as follows: The faces
of elements that are on the boundary C are labelled as unacceptable. Then one labels as
unacceptable the faces of all elements that touch the initial set of unacceptable faces. Thus,
at least one layer of elements near the contact boundary C is kept on the next coarse level
(i.e. those elements have not been agglomerated with other elements). On the next coarsening

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:189–204
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Figure 1. Levels 0 and 1 of the agglomeration.

Figure 2. Levels 2 and 3 of the agglomeration.

Figure 3. Levels 4 and 5 of the agglomeration.

levels, one increases the number of unacceptable faces by adding the faces one more layer
of (current coarse) elements on the list of unacceptable faces. The resulting agglomerated
elements are shown in Figures 1–3.
The second part of the AMGe coarsening is to select coarse dofs. In the present paper,

we have selected the vertices of the agglomerated elements as coarse dofs. The interpolation
matrix Pk=I kk+1 is de�ned by the AMGe principle in the form used in Reference [6]. It

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:189–204
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Table I. Agglomeration information.

Level 0 Level 1 Level 2 Level 3 Level 4 Level 5

dofs 5000 1500 614 398 332 326
Elements 2401 674 242 135 106 103
dofs on �C 100 100 100 100 100 100

requires element matrices on a given discretization level and creates element matrices on the
next coarse level. Then the coarse operator is de�ned variationally, that is, Ak+1=PTk AkPk .
The main reason for the kind of coarsening we chose in the present paper, is that if a �ne-

grid vector v∈Vk satis�es the constraints, its (point-wise) restriction v|coarse nodes also satis�es
the constraints, and more importantly, if a coarse vector satis�es the coarse level constraints
its AMGe interpolant satis�es the �ne-grid constraints (trivially) since the vector does not
change on C. This is the case, since the elements near the contact boundary have not been
changed. Computationally, this strategy is acceptable since the constraint set C is a boundary
of one-dimension less than the whole index set (see Table I).

4. MULTILEVEL SUBSPACE MINIMIZATION ALGORITHM

Let V =V0 be the �ne-grid vector space and Vk , k¿0 be a sequence of coarse vector spaces.
The transfer operators are denoted by Pk=I kk+1 :Vk+1 �→Vk . Their transposes I k+1k are used as
restriction operators. Finally, let Ak+1=PTk AkPk be the coarse matrix obtained variationally
from the next level �ne-grid matrix.

Algorithm 4.1 (Multilevel subspace minimization algorithm): Consider problem (1) with b0 =
b and g0=g given. Let ‘ be the coarsest level.

0. For k¿0 let vk ∈Vk; (vk)i6(gk)i ; i∈�, be a current iterate at level k and let Jk(y)= 1
2

yTAky − bTk y be the kth level quadratic functional.
1. If k¡‘ apply �1¿1 Projected Gauss–Seidel iterations with initial iterate vk . The resulting
iterate we also denote by vk . Go to Step 3.

2. Else (i.e. if k=‘), then solve the corresponding constrained minimization problem ex-
actly. The resulting solution denote by vk . Set k := k − 1 and go to Step 4.

3. Seek for a coarse-grid correction vk+1.
• Set gk+1=gk − vk |� and choose as initial approximation at level k + 1 vk+1=0.
• Set bk+1=I k+1k (bk − Akvk).
Set k := k + 1 and go to Step 1.

4. Update level k iterate vk

vnewk =vk + I kk+1vk+1

5. Apply �2¿1 Projected Gauss–Seidel iterations with initial iterate vnewk . The resulting
iterate we denote by vk . Set k := k − 1. If k¿0, go to Step 4, else one V -cycle is
completed.

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:189–204
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We �rst show that the above algorithm is well-de�ned, namely, that all the intermediate
iterates in Algorithm 4.1 satisfy the appropriate constraints.
The resulting iterate vk after the application of the Projected Gauss–Seidel algorithm in

Step 1 of Algorithm 4.1 satis�es the following constraints (vk)i6(gk)i ; i∈�. This is true due
to the projection procedure in the Projected Gauss–Seidel algorithm.
In Step 2, the resulting iterate satis�es the same constraints since we use exact coarse grid

solve.
In Step 3, the constraint set changes and we have that the initial approximation at level

k + 1, vk+1=0 satis�es the new constraints (vk+1)i6(gk+1)i ; i∈�. This is true because
(vk)i6(gk)i ; i∈�.
In Step 4, one should note that (vnewk )i6(gk)i ; i∈�. Indeed, due to the main property of

the interpolation matrix P≡ I kk+1, (2),

(vnewk )|�=(vk)|� + (I kk+1vk+1)|�=(vk)|� + vk+1|�6(vk)|� + gk+1=gk

In Step 5, the resulting iterate vk satis�es the appropriate constraints by construction due
to the properties of the Projected Gauss–Seidel.

Corollary 4.2
Algorithm 4.1 provides a monotone scheme.

Proof
This fact follows directly from Theorem 2.2.

We remark at the end that a proof of mesh-independent convergence rate of Algorithm
4.1 seems possible along the lines presented in Reference [20]. A corresponding proof in
the present context will simplify substantially since our spaces are coarsened away from the
constraint boundary. Details will be provided elsewhere.

5. FAS CONSTRAINED OPTIMIZATION ALGORITHM

Since one can treat problem (1) as a non-linear one, one could attempt to solve it by applying
the classical FAS method [8]. A corresponding FAS algorithm in the present context takes
the form.

Algorithm 5.1 (FAS constrained optimization algorithm): Consider problem (1) with b0=b
and g0=g given. Let ‘ be the coarsest level. Finally, let Nk be the set of nodes (dofs) at
level k.

0. For k¿0 let v0k ∈Vk; (v0k)i6(gk)i ; i∈�, be a current iterate at level k and let Jk(y)= 1
2

yTAky − bTk y be the kth level quadratic functional.
1. If k¡‘ apply �1¿1 Projected Gauss–Seidel iterations with initial iterate v0k . The resulting
iterate we denote by vk . Go to Step 3.

2. Else (i.e. if k=‘), then solve the corresponding constrained minimization problem ex-
actly. The resulting solution denote by vk . Set k := k − 1 and go to Step 4.
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3. Based on a coarse-grid constrained minimization problem correct the kth level iterate vk .
We de�ne gk+1 and bk+1 for the coarse-grid problem as follows:
• Set gk+1=gk= · · ·=g and choose as initial approximation at level k + 1 v0k+1=
vk |Nk+1 .

• Set bk+1=I k+1k (bk − Akvk) + Ak+1v0k+1.
Set k := k + 1 and go to Step 1.

4. Update level k iterate vk

vnewk =vk + I kk+1(vk+1 − v0k+1)
5. Apply �2¿1 Projected Gauss–Seidel iterations with initial iterate vk . The resulting iterate
we also denote by vk . Set k := k − 1. If k¿0, go to Step (4), else one V-cycle is
completed.

We next show that the above algorithm is well-de�ned, that is, that all the intermediate
iterates in Algorithm 5.1 satisfy the appropriate constraints.
The resulting iterate vk after the application of the Projected Gauss–Seidel algorithm in

Step 1 of Algorithm 5.1 satis�es the following constraints (vk)i6(gk)i ; i∈�. This is true due
to the projection procedure in the Projected Gauss–Seidel algorithm.
In Step 2, we have again that the resulting iterate satis�es the same constraints since we

use exact coarse-grid solve.
In Step 3, the constraint set does not change (from level k to level k+1) thus, v0k+1 satis�es

the constraints since it is a restriction of vk and the latter satis�es the constraints.
In Step 4, one has to show that (vnewk )i6(gk)i ; i∈�. Indeed, due to the main property of

the interpolation matrix P≡ I kk+1, (2),

(vnewk )|� = vk |� + (I kk+1(vk+1 − v0k+1))|�
= vk |� + vk+1|� − v0k+1|�
= vk |� + vk+1|� − vk |�
= vk+1|�
6 gk+1=gk

In Step 5, the resulting iterate vk satis�es the appropriate constraints again due to the
properties of the Projected Gauss–Seidel.
The following, main fact easily follows from the construction of the FAS iterates.

Theorem 5.2
Algorithm 5.1 provides a monotone scheme.

Proof
It is su�cient to prove that

Jk(vnewk )6Jk(vk)
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Denote for brevity P=I kk+1. Based on the de�nition of Ak+1=P
TAkP, Jk and Jk+1, and

bk+1=PT(bk − Akvk) + Ak+1v0k+1, one can derive the identity,

Jk(vnewk ) = Jk(vk + P(vk+1 − v0k+1))

= 1
2 (vk + P(vk+1 − v0k+1))TAk(vk + P(vk+1 − v0k+1))− (bk)T(vk + P(vk+1 − v0k+1))

= Jk(vk) + 1
2 (vk+1 − v0k+1)TAk+1(v0k+1 − vk+1)− (bk − Akvk)TP(vk+1 − v0k+1)

= Jk(vk) + 1
2 (vk+1)

TAk+1vk+1 − (PT(bk − Akvk) + Ak+1v0k+1)Tvk+1

+ 1
2 (v

0
k+1)

TAk+1v0k+1 + (bk − Akvk)TPv0k+1

= Jk(vk) + Jk+1(vk+1) + 1
2 (v

0
k+1)

TAk+1v0k+1 + (bk − Akvk)TPv0k+1

One also has,

−Jk+1(v0k+1) =− 1
2 (v

0
k+1)

TAk+1v0k+1 + (bk+1)
Tv0k+1

=− 1
2 (v

0
k+1)

TAk+1v0k+1 + (P
T(bk − Akvk) + Ak+1v0k+1)Tv0k+1

= 1
2 (v

0
k+1)

TAk+1v0k+1 + (bk − Akvk)TPv0k+1

The latter two identities imply the following main one:

Jk(vnewk )=Jk(vk) + Jk+1(vk+1)− Jk+1(v0k+1)

Now, having in mind that in Algorithm 5.1 the vector vk+1 reduces the functional Jk+1 (as-
sumed by induction, true at the coarsest level, and since we use monotone smoother), that is,

Jk+1(vk+1)6Jk+1(v0k+1)

we arrive at the �nal desired inequality,

Jk(vnewk )6Jk(vk)

6. NUMERICAL EXPERIMENTS FOR SIGNORINI’S PROBLEM

6.1. Signorini’s problem

We consider the so-called Signorini’s problem, which models a linearly elastic body, deformed
due to volume and surface forces, which should not penetrate a rigid frictionless foundation.

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:189–204
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Find the displacement �eld u=u(x) (a vector valued function) such that

−�ij; j(u)=fi in �

ui=0 on �D

�ij(u)nj= ti on �F

�Ti(u)=0 on �C

�n(u)60 on �C

un − g60 on �C

�n(u)(un − g)=0 on �C

�⊂Rd, d=2; 3, i; j; k; l=1; : : : ; d.
n outward unit vector normal to �C ,
un=u · n=uini
g is the initial gap between the body and the foundation, g(x)¿0; f the body forces; t the sur-
face tractions applied to a portion of the body surface �F ; �D a portion of the boundary along
which the body is �xed; �C the candidate contact surface (the actual surface on which the body
comes in contact is not known in advance but is contained in the candidate contact surface);
E the Hooke’s tensor having the following symmetry properties Eijkl=Ejilk=Eijlk=Eklij; � the
stress tensor �ij(u)=Eijkluk; l—Hooke’s law; �n the normal component of the stress vector,
�n=�ijninj and �Ti the tangential component of the stress vector, �Ti=�ijnj − �nni.
We are using the Einstein summation notation above i.e. repeated indices are implicitly

summed over. Also we use the notation, j=@=@xj for a derivative.
The �nite element discretization of the weak form of the Signorini’s problem can be equiv-

alently formulated as the following constrained minimization problem:

J (v) = 1
2 v

TAv − bTv �→ min; v∈K
K = {v∈RdNP | nP · vP6gP; P∈�C}

(7)

Note that there is only one inequality imposed per node P on �C and that each node P is
associated with d¿1 dof. In general, the set K is not of the canonical form vi6gi but it can
be transformed to one (see, e.g. Reference [11] or below).

Th consists of simplex elements, over which each component of the displacement is ap-
proximated by linear polynomials. NP is the total number of nodal points in Th. Again, d=2
or d=3 is dimension of the domain; A the symmetric positive de�nite matrix; n (or nP) the
unit length outward normal on �C (associated with node P∈�C); gi the length of a vector
beginning at the node corresponding to dofs i with direction parallel to the normal vector at
that node, ending at the crossing point with the rigid foundation and � the set of indices of
all constraint degrees of freedom on �C .
We will assume that all normal vectors nP, associated with nodes P∈�C are equal to a

co-ordinate unit vector. This can be achieved by appropriate transformation (change of vari-
ables) at the nodes on �C of the unknown displacement vector. Then problem (7) takes the
standard form with simple inequality constraints as in (1).
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Table II. Numerical results for both FAS and MSMA on a sequence of six grids. The performance of
the two methods is practically identical; they di�er only by the number of iterations on coarsest grid

(not shown in the table).

Grid1 Grid2 Grid3 Grid4 Grid5 Grid6

No. dofs 200 800 1800 5000 20000 45000
No. Grid levels 5 6 6 7 8 9
Grid complexity 2.57 2.11 1.84 1.69 1.54 1.49
Operator complexity 2.47 2.03 1.78 1.66 1.52 1.47
No. MG iter 5 pre- and post-PGS sweeps 4 4 4 5 7 9
No. MG iter 1 pre- and post-PGS sweeps 6 5 6 7 12 22

The algorithm given above has been implemented in a C++ code and have been applied to
a Signorini’s problem in 2D with �=(0; 4)2, �D={1}× [0; 4], �F={4}× [0; 4]∪ [0; 4]×{4},
�C=[0; 4]×{1}, with body force f=(0;−1), surface traction t=0, initial gap g=2, Lame
constants �=11:3, �=8:1. The continuous problem is discretized by bilinear �nite elements on
quadrilaterals. In each iteration of the Multilevel Subspace Minimization Algorithm (MSMA)
and the FAS Constrained Optimization Algorithm (FAS) we apply either 1 or 5 pre- and
post-smoothing sweeps of Projected Gauss–Seidel and the Dostal’s algorithm as a coarse grid
solver on the coarsest level. The latter algorithm is found in Reference [12]. It falls in the
category of active set strategies. Depending on a parameter, one alternates between searching
for the contact set and solving a complementary unconstrained minimization problem with
Conjugate gradient like method.
The algorithms MSMA and FAS terminate the iterations when |J(vm+1) − J(vm)|=|J(v0)|

610−5. The stopping criterion for the Dostal’s algorithm is |J(vm+1)−J(vm)|=|J(v0)|610−10.
In the latter case, J an vi stand for the functional and the iterates at the coarsest level.
The numerical results are shown in Table II.
Both algorithms give very similar results—the number of multigrid iterations for both al-

gorithms are the same, the only di�erence is in the number of Conjugate gradient steps in
the Dostal’s algorithm.
One can clearly see the almost mesh-independent number of the iterations especially if

the number of smoothing steps is su�ciently large. The deterioration of the overall iterations
for small numbers of smoothing steps is most likely due to the fact that we use the simplest
choice of coarse dofs, namely the vertices of the agglomerated elements. An alternative would
be to use richer coarse grids (obtained by compatible relaxation [21] or spectral AMGe [22]),
but this is left for further study. Another fact that possibly contributes to the need of high
number of projected Gauss–Seidel iterations is that the smoothing property of Gauss–Seidel
for the constrained problem is probably not as good as in the case of standard Gauss–Seidel
applied to the unconstrained functional.
We �nally mention that the cost of the coarse-grid algorithm is typically of order O(|�| ×

(number of iterations)), that is, proportional to the number of dofs on the contact boundary
times the number of iterations used in the Dostal’s algorithm. The latter can be bounded by
the condition number of the respective matrix involved. In our model case it is of order h−1.
That is overall, the cost is bounded by the total number of dofs (on the �ne mesh).
In Figure 4 is shown the di�erence log(J (vk) − J (u)). Here vk is the kth iterate and u is

the vector at which the functional reaches its minimal value, with respect to the number of
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Figure 4. Numerical results for grids 1–6.
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iterations on six di�erent grids. The observation is that this quantity decreases almost linearly
on all the grids.

7. CONCLUSIONS

Two multigrid algorithms for the solution of the constrained minimization problem arising
from the Signorini’s problem are presented—Multilevel Subspace Minimization Algorithm
and a classical FAS Constrained Optimization Algorithm. Both algorithms provide monotone
convergence due to the special element agglomeration AMGe coarsening away from the con-
strained set we employed. Thus the constraint set is present on all levels and transfer of data
between the grids is straightforward.
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