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1 Introduction

Among the numerical discretization methods used to solve the equations of
density functional theory (DFT), the most widely used are linear combination
of atomic orbitals (LCAO) — usually Gaussian-type orbitals (GTO)—, plane-
waves (PW) and finite differences (FD). Of these three methods, FD is the
most recent and less common. General fully 3D grid-based electronic struc-
ture representation using finite differences as approximate numerical schemes
for partial differential operators have started being widely used in the last ten
years only. However, real-space finite difference approaches have already shown
to be an efficient tool in a substantial number of large scale electronic structure
calculations. Among its various applications, we can cite optical properties of
surfaces (Schmidt et al., 2001), surface reconstruction (Ramamoorthy et al.,
1998), properties of GaN surfaces (Bungaro et al., 1999), excitation energies
and photoabsorption spectra of atoms and clusters (Vasiliev et al., 1999), dif-
fusion of oxygen ions in SiO2 (Jin and Chang, 2001), first-principles molecular
dynamics of carbon nanotubes (Buongiorno Nardelli et al., 1998) and pro-
cesses in solution (H.Takahashi et al., 2001; Fattebert and Gygi, 2002). In this
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article, we review the numerical aspects of this approach for total-energy pseu-
dopotential calculations and show the reasons why it is becoming a method
of choice. We also illustrate the method with an application to calculations
of electronic structure and conductance of carbon nanotube on a metallic
contact. We will limit the discussion to ab initio Density Functional Theory
(DFT) models, where no parameters are fitted to experimental data.

Traditionally, chemists have mostly used LCAO methods. Atomic orbitals ex-
pressed as linear combinations of Gaussian functions provide an efficient lim-
ited basis set that allows for a good description of the electronic structure
of localized finite molecules. The wide spread commercial code GAUSSIAN
(Gaussian, Inc.) is based on such an approach. On the other hand, plane
waves (PW) (Payne et al., 1992; Galli and Pasquarello, 1993; Parrinello, 1997,
e.g.) are very efficient to describe periodic systems. Since a plane wave rep-
resents a free electron, this approach has been very successful at describing
systems with almost free electrons, like metals. By their nature, they have been
mostly used and developed by solid state physicists. In this method, known
as pseudo-spectral method in the mathematics community, the numerical ba-
sis set is completely independent of the positions of the atoms present in the
simulation. It can be made as accurate as desired by systematically increasing
the number of basis functions included in the basis set.

Like PW, the finite difference method is an alternative to the linear combi-
nation of atomic orbitals when highly accurate electronic wave functions are
required. Both approaches try to estimate the electronic structure of a phys-
ical system without any assumption on where the atoms and electrons are
located. While plane waves discretizations benefit from the long and exten-
sive experience of many groups of solid state physicists, there are only a few
groups around the world that have developed fully functional codes that allow
first-principles molecular dynamics simulations on real-space grids.

In recent years, large parallel supercomputers have become an essential tool in
first-principles molecular dynamics simulations. They allow not only calcula-
tions that would take months or years on single processor machines, but also
calculations that would just not fit into the memory of a workstation or high-
end PC. In a parallel environment, the electronic wave functions described
in a PW approach can be distributed between the processors for example.
Such an approach allows an efficient local application of the FFT algorithm
to transform wave functions between real-space and reciprocal space (where
the Laplacian is computed). However, every time a matrix element between
two wave functions is required — in an orthogonalization process for example
—, a huge traffic of data through the whole machine is necessary. In a real-
space approach, all the expensive operations can be done locally, thanks to the
real-space nature of the DFT Hamiltonian operator and the wave functions.
To compute matrix elements between wave functions, local contributions are
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computed on every processing element (PE) before being summed up at the
end over all the PEs. This is one of the main advantages of FD over PW for
nowadays simulations.

Another key element in the development of efficient grid-based FD approaches
in large scale electronic structure calculations is the multigrid method (Brandt,
1977). Indeed, real-space large-scale ab initio calculations involve large sparse
matrices, and multigrid methods, either as solvers or as preconditioners, allow
to design very efficient scalable algorithms (Briggs et al., 1995, 1996; Fattebert,
1996, 1999; Ancilotto et al., 1999; Jin et al., 1999; Wang and Beck, 2000;
Fattebert and Bernholc, 2000; Heiskanen et al., 2001).

More recently, in the context of the search for linear scaling algorithms (see
Goedecker, this volume, e.g.), real-space methods have appeared to be appro-
priate for imposing natural localization constraints on the orbitals (Hernandez
and Gillan, 1995; Hoshi and Fujiwara, 1997; Fattebert and Bernholc, 2000).
Such an approach leads to a dramatic reduction in computer time and mem-
ory requirements for very large systems. However, since these algorithms are
very recent and useful only for systems of sizes close to the limit of computing
resources available today, these methods are still in development and many
open questions remain.

Other advantages of FD over standard PW approaches include the possibility
of introducing local mesh refinements (Gygi and Galli, 1995; Modine et al.,
1996; Fattebert, 1999) and Dirichlet boundary conditions for nonperiodic sys-
tems in a very natural fashion. Some of these aspects are discussed for example
in a recent review paper by Beck (2000). If local mesh refinement is a require-
ment for all electrons calculations, many pseudopotential calculations can be
carried out with a perfectly regular mesh. Also, local mesh refinements involve
many complications such as load balancing for implementation on parallel
computers, or Pulay forces. To our knowledge, no large scale firstprinciples
molecular dynamics with local mesh refinements have been carried out so far
and this aspect of FD methods will not be discussed further here.

The computational advantages of real-space approaches have also motivated
some research in 3D finite elements (FE) methods for electronic structure cal-
culations (White et al., 1989; Murakami et al., 1992; Tsuchida and Tsukada,
1995; Kohn et al., 1997; Pask et al., 1999). However, since electronic structure
calculations in general require computation domains of very simple shapes like
rectangular cells, so far FE methods have not demonstrated real advantages
over FD methods for regular grids like those currently used with pseudopo-
tentials. On the other hand, FE methods can be considerably more expensive.

Advanced numerical methods like those presented in this article are useful only
if they allow to treat real problems in solid state physics or physical chemistry.
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Besides the foreseen improvement in performance for calculations of large scale
systems, localized orbital adapted to their chemical environment offer the
possibility of novel computational applications. In particular, the possibility
of obtaining accurate localized orbital basis would be, in principles, a useful
starting point for formal developments such as the semiclassical theory of
electron dynamics or the theory of magnetic interactions in solids, in a natural
extension of the Wannier representation of crystal wave functions (Ashcroft
and Mermin, 1976, Chap.10, p.187 and ff.). Among the possible applications
of localized orbital methods, one of increasing technological importance is the
calculation of the quantum transport properties of nanostructures.

The current limits of semiconductor electronics and the challenges for future
developments involve the continuous shrinking of the physical dimensions of
the devices and the attainment of higher speeds. The drive to produce smaller
devices has lead the current research towards a new form of electronics in
which nanoscale objects, such as clusters or molecules, replace the transis-
tors of today’s silicon technology. However, the production and integration
of nanoscale individual components into easily reproducible device structures
presents many challenges, both experimentally and theoretically. From the the-
oretical point of view, the design of such devices requires explicit modelling
of quantum propagation of electrons in nanoscale systems. The quantity to
be calculated is the quantum conductance, that is the measure of the ease
with which electrons will transmit through a conductor, or alternatively of
the resistance that electrons will encounter in their flow. As we will see in the
following sections, the evaluation of conductance in nanostructures requires an
electronic structure calculation of the system under consideration, the com-
putation of its Green’s function, and an accurate treatment of the coupling to
and scattering at the contacts.

Recent years have witnessed a great amount of research in the field of quan-
tum conductance in nanostructures (Beenakker and Van Houten, 1991). These
have become the systems of choice for investigations of electrical conduction
at mesoscopic scale. The improvements in nanostructured material production
have stimulated developments in both experiment and theory. In particular,
the formal relation between conduction and transmission, the Landauer for-
mula (Landauer, 1970), has enhanced the understanding of electronic trans-
port in extended systems and has proven to be very useful in interpreting
experiments involving the conductance of nanostructures.

The problem of understanding the transport behavior of nanoscale structures
cannot be effectively solved without a fully ab initio methodology. Only the
latter is able to accurately describe the behavior of the electrons in the highly
inhomogeneous environment of the nanoscale device, as well as account for the
charge transfer and the interactions within the nano-system. Most of the ex-
isting methods to compute conductance from ab initio methods are based on
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the solution of the quantum scattering problem for the electronic wave func-
tions through the conductor using a number of related techniques. Lippman-
Schwinger and perturbative Green’s function methods have been used to study
conductance in metallic nanowires and recently in small molecular nanocon-
tacts (Lang, 1995; Di Ventra et al., 2000). Conduction in nanowires, junctions
and nanotube systems has been addressed using nonlocal pseudopotentials
methods (Choi and Ihm, 1999; Choi et al., 2000) and through the solution
of the coupled channels equations in a scattering-theoretic approach (Hirose
and Tsukada, 1995; Kobayashi et al., 2000; Landman et al., 2000). The above
methods compute ab initio transport using a plane wave representation of
the electronic wave functions. This imposes severe restrictions on the size of
the system because of the large number of basis functions necessary for an
accurate description of the electron transmission process. Only recently real-
space approaches been considered for a more efficient solution of the electronic
transport problem. They are based on the use of LCAO (Yoon et al., 2001;
Taylor et al., 2000) or Gaussian orbital bases (Yaliraki et al., 1999). These are
combined with either a scattering state solution for the transmission (Yoon
et al., 2001) or Green’s function-based techniques (Yaliraki et al., 1999; Taylor
et al., 2000).

In this article we do not intend to cover the wide variety of techniques that
have been developed to compute quantum conductance, both from ab initio
or from more phenomenological approaches. For such an exhaustive task, we
refer the interested reader to the excellent monographs by Datta (1995) and
Ferry and Goodnick (1997) and to the references at the end of this article. On
the contrary, we have chosen to outline the main steps of the approach derived
by us in the context of localized orbital methods (Buongiorno Nardelli et al.,
2001). In this article we will limit the discussion to the linear response regime
and thus to zero bias across the conductor-lead junctions.

This article is organized as follows. In Sec.2, we review the finite difference
method in the context of the Kohn-Sham (KS) equations and pseudopotentials
approach, also describing some specific features of iterative algorithms used
to solve the KS equations in real-space. We also review the computation of
the forces to optimize geometries and carry out first-principles molecular dy-
namics. We finish Sec.2 with some more advanced features designed to reduce
the computational cost of the method in a localized orbitals representation.
In Sec.3, we review a numerical method to compute quantum conductance
through nanostructures. This method is based on a description of the elec-
tronic structure in a basis of localized orbitals. In Sec.4, we conclude this
article by an illustration that brings together the localized grid-based orbitals
and the quantum conductance algorithm to compute ab initio quantum con-
ductance of a carbon nanotube on an Aluminium surface.
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2 Electronic structure calculation by finite differences

2.1 Kohn-Sham equations

Kohn-Sham (KS) theory (Kohn and Sham, 1965) is a widely used model for
first-principles calculations (see e.g. Cancès, this volume). It states that the
electronic ground state of a physical system can be described by a system of
orthogonal one-particle electronic wave functions ψj, j = 1, · · · , N that min-
imizes the KS total energy functional EKS. To simplify the discussion we
neglect here the spin of the electrons by allowing double occupations of the
orbitals, so that the electronic density is defined as

ρe(~r) =
N∑

i=1

fi|ψi(~r)|2 (1)

where 0 ≤ fi ≤ 2, i = 1 · · · , N are the occupation numbers. We also assume
that the system is neutral, i.e. the total charge of the electrons neutralizes
exactly the nuclei charges.

For a molecule composed of Na atoms located at positions {~Ra}Na
a=1 in a com-

putation domain Ω, the KS energy functional is given by (in atomic units)

EKS [{ψi}N
i=1, {~Ra}Na

a=1] =
N∑

i=1

fi

∫

Ω

ψ∗i (~r)
(
−1

2
∇2

)
ψi(~r)d~r

+
1

2

∫

Ω

∫

Ω

ρe(~r1)ρe(~r2)

|~r1 − ~r2| d~r1d~r2 + EXC [ρe] +
∫

Ω

ψ∗i (~r)(Vextψi)(~r)d~r. (2)

The first term represents the kinetic energy of the electrons. The second repre-
sents the electrostatic energy of interaction between electrons that we will note
Ees. EXC models the exchange and correlation between electrons. In this pa-
per, we will use the local density approximation (LDA), or the first-principles
exchange-correlation functional proposed by Perdew-Burke-Ernzerhof (PBE)
(Perdew et al., 1996) which often provides results in better agreement with
experiments and is appropriate for a grid-based implementation. In the last
term of Eq.(2), the potential Vext represents the total potential produced by

the atomic nuclei at positions {~Ra}Na
a=1.

The ground state of a physical system is represented by orbitals that minimize
the energy functional (2) under the constraints that the ψj are orthonormal.
This minima can be found by solving the associated Euler-Lagrange equations
— Kohn-Sham equations (Kohn and Sham, 1965) —
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Hψj =
[
−1

2
∇2 + vH(ρe) + µxc(ρe) + Vext

]
ψj = εjψj, (3)

which must be solved self-consistently for the N lowest eigenvalues εj, while
imposing the orthonormality constraints < ψi|ψj >= δij. We use the usual
quantum mechanics notation < .|. > for the L2 scalar product. The Hartree
potential vH represents the Coulomb potential due to the electronic charge
density ρe, and µxc = δExc[ρe]/δρe is the exchange and correlation potential.

2.2 Finite differences approach

In order to discretize the KS equations, we introduce a real-space rectangular
grid Ωh of mesh spacing hx, hy, hz in the directions x, y, z that covers the com-
putation domain Ω. Let M be the number of grid points. The wave functions,
potentials and the electronic density are represented by their values at the
grid points ~rijk = (xi, yj, zk). Integrals over Ω are performed using the discrete
summation rule ∫

Ω

u(~r)d~r ≈ hxhyhz

∑

i,j,k∈Ωh

u(~rijk).

Given the values of a function u(~r) on a set of nodes ~ri,j,k the traditional finite
difference approximation wi,j,k to the Laplacian of the function at a given node
is expressed as a linear combination of values of the function at the neighboring
nodes

wi,j,k =
p∑

n=−p

cn (u(xi + nhx, yj, zk) + u(xi, yj + nhy, zk)

+ u(xi, yj, zk + nhz)) (4)

where the coefficients {cn} can be computed from the Taylor expansion of u
near ~ri,j,k. Such an approximation has an order of accuracy 2p, that is for a
sufficiently smooth function u, wi,j,k will converge at the rate O(h2p) as the
mesh spacing h → 0. For the second order approximation for example (p = 1),
we have c0 = 2/h2 and c1 = −1/h2. High order versions of this scheme were
first used in electronic structure calculations by Chelikowsky et al. (1994).

As an alternative, one can also use a compact finite difference scheme (also
called Mehrstellenverfahren in Collatz (1966)). For example, a 4th order FD
scheme for the Laplacian on a cubic grid is based on the relation

1

6h2





24u(~r0)− 2
∑

~r∈Ωh,

‖~r−~r0‖=h

u(~r)− ∑
~r∈Ωh,

‖~r−~r0‖=
√

2h

u(~r)
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=
1

72





48(−∇2u)(~r0) + 2
∑

~r∈Ωh,

‖~r−~r0‖=h

(−∇2u)(~r) +
∑

~r∈Ωh,

‖~r−~r0‖=
√

2h

(−∇2u)(~r)





(5)

+O(h4),

valid for a sufficiently differentiable function u(~r). For simplicity, we have
assumed here that hx = hy = hz, but this expression is easy to extend to
the general case. This FD scheme requires only values at grid points within a
sphere of radius

√
2h. Beside its good numerical properties, the compactness of

this scheme reduces the amount of communications in a domain-decomposition
based parallel implementation. While increasing the order of the FD scheme
improves the accuracy for very fine grids, it may not be the case for a given
computational grid. In practice, this compact 4th order scheme consistently
improves the accuracy compared to a standard 4th order scheme, as illustrated
in Fig.1.

Remark 2.1 The FD method is not variational, and by refining the mesh the
total energy generally increases towards convergence.

It is easy to see that a compact FD scheme like (5) leads to an eigenvalue
problem of the form

(Lh + BhVh)~ψi = εiBh
~ψi (6)

where Lh represents the FD scheme on the left-hand side of Eq.(5) and Bh ∈
MM is a sparse well conditioned matrix that represents the FD-like scheme
on the right-hand side of Eq.(5). Vh represents the potential on the grid. Let
Hh = Lh + BhVh. One can show that B−1

h Hh is symmetric (Bh and Lh com-

mute) so that the eigenvalues εi are real and the eigenvectors ~ψi can be chosen
orthogonals.

This type of compact FD scheme were simultaneously introduced in electronic
structure calculations by Briggs et al. (1995) and Fattebert (1996). The simu-
lations presented in this article are based on this scheme. However, to simplify
the notations, we will drop the matrix Bh in the rest of this article. In gen-
eral, from the point of view of computer time and memory requirements, FD
schemes of order larger than 2 are clearly worthwhile since they allow to work
with much coarser grids. This reduces the cost of operations like scalar prod-
ucts between trial eigenfunctions or linear combinations of trial eigenfunctions
in the iterative solver (see Sec.2.5).
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Fig. 1. Total energy for a Cl2 molecule as a function of the distance Cl − Cl for sev-
eral finite difference schemes, using the PBE exchange and correlation functional
and pseudopotentials by Hamann (1989). The grid spacing used (h = 0.34) is suffi-
cient to accurately compute the equilibrium bond length and binding energy of the
molecule using the schemes of order 4 and 6, while it is clearly too coarse for the
2nd order scheme. The top line shows a fully converged result.

2.3 General formulation in nonorthogonal orbitals

Most of the time, we are not interested in the individual eigenfunctions solu-
tions of the KS equations, but only in the subspace spanned by these functions.
It means that one can represent the subspace of the electronic orbitals by a
more general basis of nonorthogonal functions, {φ1, . . . , φN}. We write these
functions as vectors, columns of a matrix Φ,

Φ = (~φ1, . . . , ~φN).

An orthonormal basis of approximate eigenfunctions (Ritz functions) can be
obtained by a diagonalization in this subspace of dimension N (Ritz proce-
dure). We denote by C ∈MN the matrix that transforms Φ into the basis Ψ
of orthonormal Ritz functions,

Ψ =
(
~ψ1, . . . , ~ψN

)
= ΦC. (7)

The matrix C satisfies
CCT = S−1,
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where S = ΦT Φ is the overlap matrix.

In the following, for an operator A we will use the notation

A(Φ) = ΦT AΦ.

We then have the relation

A(Ψ) = CT A(Φ)C.

Equation (7) defines a transformation to a Ritz basis only if C is a solution
of the generalized symmetric eigenvalue problem

H(Φ)C = SCΛ, (8)

where Λ ∈MN is a diagonal matrix that satisfies Λ = ΨT HΨ. The matrix C
can actually be decomposed as a product C = L−T U , where L is the Cholesky
factorization of S,

S = LLT ,

and U is an orthogonal matrix. Knowing L, the generalized eigenvalue problem
(8) is reduced to a standard symmetric eigenvalue problem

L−1H(Φ)L−T U = UΛ. (9)

For a chemical potential µ, let us define Υ ∈MN by its matrix elements

Υij = δijf [(εi − µ)/kBT ],

where f is a Fermi-Dirac distribution at temperature T and kB is the Boltz-
mann constant. The density operator ρ̂ is then defined as

ρ̂ = ΨΥΨT = ΦCΥCT ΦT .

For T = 0, ρ̂ is a projector onto the states of eigenvalues lower than µ. The
dimension of this density matrix is given by the number of degrees of freedom,
i.e., the number of grid points in a grid-based approach. This number is in
general so large that it is impossible to apply numerical methods that require
ρ(~r, ~r′) (matrix of size M × M). However, it is useful to represent ρ̂ in the
basis Φ

ρ(Φ) = ΦT ρ̂Φ = C−T ΥC−1.
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Even more useful is the matrix ρ̄(Φ)

ρ̄(Φ) = S−1ρ(Φ)S−1 = CΥCT . (10)

This matrix appears naturally in the expression used to compute the expec-
tation value Ā of an operator A represented in the basis Φ,

Ā = 2tr(ΥA(Ψ)) = 2tr(ρ̄(Φ)A(Φ)).

In particular, the total number of electrons in the system is given by

Ne = 2tr(ρ̄(Φ)S).

Also, the electronic density in a nonorthogonal orbitals formulation is simply
given by

ρe(~r) = 2
N∑

j,k=1

(ρ̄(Φ))jkφj(~r)φk(~r). (11)

Remark 2.2 If all the computed states are fully occupied, we have ρ(Φ) = S
and ρ̄(Φ) = S−1.

2.4 Pseudopotentials

On regular grids, FD methods, like plane-waves, are not very efficient to de-
scribe singular atomic potentials accurately. In particular for microcanonical
molecular dynamics, it is difficult to guarantee a good conservation of the total
energy of the system. These singularities can however be removed by replacing
the atomic nuclei and core electrons — which can be approximated as frozen
in their atomic state — by pseudopotentials. In the pseudopotential approach,
the electronic structure calculation problem is reduced to the computation of
a cloud of valence electrons living in a background of positive ions represented
by smooth non-singular pseudopotentials.

Accurate calculations can be performed by representing each atomic core by a
nonlocal separable pseudopotential in its Kleinman-Bylander form (Kleinman
and Bylander, 1982)

Vps = Vlocal + Vnl = vlocal
ps (~r) +

`max∑

`=0

∑̀

m=−`

|vm
` > EKB

` < vm
` | (12)
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Fig. 2. Example of atomic pseudopotential: Chlorine for the PBE functional. The
radial functions plotted are the radial components of the projector functions, v` for
` = 0, 1 and the local pseudopotential vlocal

ps (` = 2).

where EKB
` are normalization coefficients. The function vlocal

ps contains the long
range effects and is equal to −Z/r outside of the core. The functions vm

` (~r) are
the product of a spherical harmonics Y m

` by a radial function v`(r) — centered
on an atom — which vanishes beyond some critical radius. Being separable
means that the matrix elements < ψi|Vnl|ψj > can be computed efficiently
according to

< φj|Vnl|φk >=
`max∑

`=0

∑̀

m=−`

EKB
` f`m(φj)f`m(φk) (13)

where the quantities f`m(φn) =< φn|vm
` > can be computed independently of

each other. Since the functions vm
` are localized in real-space, the evaluation

of all the matrix elements < ψj|Vnl|ψk > for a system of N atoms scales like
O(N2).

In the applications presented in this article, we use the pseudopotentials pro-
posed by Hamann (1989). An example is represented in Fig. 2 (Chlorine).

Remark 2.3 All the atoms of the periodic table cannot be represented by pseu-
dopotentials with the same degree of smoothness. To be represented accurately,
atomic species like Oxygen or Nitrogen require finer discretization grids than
Silicon for example. This makes the calculations of the electronic structure of
a crystal of 64 Silicon atoms 5-10 times cheaper than the simulation of a cell
of liquid water with 32 molecules, even if the number of valence electrons to
compute is the same in both cases.

Using periodic boundary conditions, the total energy of a system is in principle
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invariant under spatial translations. Unlike in a PW approach, a real-space
finite grid representation breaks this invariance (Briggs et al., 1995). However,
a discretization grid fine enough ensures that the total energy is conserved
under translation within the minimal accuracy required in the calculation.
Also, in order to avoid problems related to energy variations under spatial
translations, the pseudopotentials can be filtered (Briggs et al., 1996). The
pseudopotentials (local part and projectors) are first transformed to Fourier
space by the Fourier transform

V`m(~k) =
1

(2π)3/2

∫

R3

vm
` (~r)e−i~k~rd~r = C~k,`,m

∞∫

0

v`(r)j`(|~k|r)r2dr. (14)

The index (`,m) denotes the symmetry of the functions vm
` (~r) = v`(r)Y

m
` (θ, φ).

j`(r) is a spherical Bessel function of order ` and C~k,`,m is a complex factor

depending on ~k, `, m. For |~k| larger than a cutoff kcut, the coefficients V`m(~k)

are filtered by a Gaussian function e−β(|~k|/kcut−1)2 before applying an inverse
Fourier transform. One can use for example kcut = 2π/3h. In practice, since

the filtering depends only on |~k|, the coefficients C~k,`,m do not need to be com-
puted and only the 1D radial integral is required for an appropriate range of
|~k|. The pseudopotentials lose in general their localization properties in real-
space after being filtered in Fourier space and a second filtering in real-space
is required to ensure that the nonlocal projectors remain confined within a
limited radius. This second filtering can also be done by a Gaussian function
to avoid reintroducing too many high frequency components.

Of course this filtering procedure modifies the pseudopotentials to a degree set
by the grid spacing. These filtered functions will however converge towards the
true pseudopotentials — together with the wave functions — as one decreases
the mesh spacing. For every atomic species, one should then carefully check
what grid spacing is required to ensure that the physical quantities of interest
are well converged.

2.5 Solving the eigenvalue problem

The Kohn-Sham equations discretized by FD result in a huge 3D eigenvalue
problem. Fortunately, the matrices involved are very sparse and efficient it-
erative methods can be used to solve this problem. In this chapter, we are
going to restrict the discussion to the particularities of eigenvalue solvers for
finite difference discretizations. After introducing some general features of min-
imization processes, we describe an appropriate multigrid preconditioner for
real-space discretizations.
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The multigrid full-approximation scheme (FAS) originally proposed by Brandt
(1977) is an efficient solver for nonlinear problems on a grid. In this algorithm,
the entire problem has to be represented on all the grids, from the coarsest
to the finest, in order to treat on equal footing all the length scales of the
solution. Such an approach is not obvious to apply to the KS eigenvalue prob-
lem. Indeed, the numerous eigenfunctions of interest loose their meaning on
very coarse grids, and one may be limited in the number of usable coarse
grids. Only a few successful applications of the FAS algorithm for electronic
structure calculations have been reported so far. They have been limited to
purely academic problems (Costiner and Taasan, 1995) and static all elec-
trons calculations of atoms and diatomic molecules (Wang and Beck, 2000).
Recently, Heiskanen et al. (2001) proposed to use the Rayleigh quotient multi-
grid (RQMG) method (Mandel and McCormick, 1989) that avoids the coarse
grid representation problem. So far it was applied only for static electronic
structure calculations.

Various other methods are based on minimization schemes that make use of the
steepest descent (SD) direction along which the energy functional decreases at
the fastest rate. This direction is given by the gradient of the energy functional
with the opposite sign. In the basis Ψ, this direction — in a space of dimension
M ×N — is easy to compute since it is given by the negative residual of the
Kohn-Sham equations (3) and can be expressed as an N ×M matrix

D(Ψ) = ΨΛ−HΨ. (15)

One verifies that this gradient satisfies the relation ΨT D(Ψ) = 0.

For an optimum convergence rate, it is important to use the true steepest de-
scent direction in algorithms expressed in non-orthogonal orbitals formulation.
This direction can differ substantially from the derivative with respect to Φ
if the basis Φ is highly non-orthogonal. This SD direction is easy to compute
for the eigenfunctions Ψ and a simple way to obtain it in the basis Φ is to use
the matrix C (from Eq.(7)) to derive

D(Φ) = D(Ψ)C−1 = (ΨΛ−HΨ) C−1 = ΦΘ−HΦ, (16)

where Θ = S−1H(Φ). In the following, we consider a SD algorithm with a
linear preconditioning operator K. The basis Φ is updated according to

Φnew = Φ + ηK (ΦΘ−HΦ) (17)

where η is a pseudo-time step. In this algorithm all the trial wave functions are
updated simultaneously. In the particular case K = Identity, (17) is equivalent
to the method proposed in Galli and Parrinello (1992). Since by definition
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Φnew = (Ψ + ηKD(Ψ))C−1 = ΨnewC−1,

the same subspace is generated at each iteration, independently of the choice
of the basis Φ. Note also that Eq.(17) does not depend on C and therefore
does not require the solution of the eigenvalue problem (8).

Remark 2.4 Alternatively, the above SD directions can be used in a conjugate
gradient (CG) method (Edelman et al., 1998). In the applications presented
here, the convergence rate of the preconditioned steepest descent (PSD) algo-
rithm with the preconditioning presented later in this Section is fast enough to
make the implementation of the CG approach unnecessary.

In actual calculations, the basis functions Φ are corrected at each iteration
using the PSD directions as in (17). A new electronic density ρe is then com-
puted as well as new Hartree and exchange-correlation potentials. To avoid
large oscillations of the charge distribution from step to step, these poten-
tials can be mixed linearly with those used at the previous step. The basis
Φ is refined by iterative updates until self-consistency (SC) is achieved and,
at convergence accurately describe the true Kohn-Sham ground state of the
system.

Remark 2.5 For iterative algorithms based on the Ritz vectors, the trans-
formation (7) is one of the most expensive part of the calculation for large
scale simulations. In a nonorthogonal representation, this operation is not re-
quired anymore. The cost is however transferred to the computation of the SD
directions (Eq.16).

In the particular case of a linear Hamiltonian operator and if all the orbitals are
fully occupied, the Kohn-Sham functional expressed in nonorthogonal orbitals
can be written as a functional without constraints

EKS = 2tr
(
S−1ΦT HΦ

)
. (18)

To motivate the introduction of a preconditioner, we first estimate the ex-
pected rate of convergence of iterative algorithms based on steepest descent
directions to minimize Eq.(18). The rate of convergence of the SD method is
determined by the condition number χ(H) of the Hessian matrix H associ-
ated to the problem. To estimate χ(H) we compute the eigenvalues of H. As
in Pfrommer et al. (1999), we consider electronic states {φi}N

i=1 expressed as
a perturbation of the ground state eigenfunctions {ψi}N

i=1

φi = ψi +
M∑

l=1

c
(i)
l ψl. (19)
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Inserting (19) into (18), we obtain to the second order in the coefficients c
(i)
l

EKS − E0 = 2
N∑

i=1

M∑

k=m+1

(εk − εi)
(
c
(i)
k

)2
. (20)

The coefficients c
(i)
l for l ≤ N correspond to directions in the parameter space

along which the objective function is constant. In the complementary parame-
ter space, we obtain that the condition number of the Hessian matrix is given
by

χ(H) =
εM − ε1

εN+1 − εN

. (21)

Remark 2.6 In general, as the number of atoms in a physical system in-
creases, the spectrum of the Hamiltonian becomes denser, while the extreme
eigenvalues (εM and ε1) remain about the same.

As in PW calculations, real-space representations of the electronic wave func-
tions require a very large number of degrees of freedom. In particular in the
presence of atoms represented by very hard pseudopotentials. A very fine grid
implies a quite large value for εM in Eq.(21) that negatively affects the con-
dition number of the Hessian matrix. If Ψ is corrected at each step according
to a SD algorithm without preconditioning

Ψnew = Ψ + ηD(Ψ),

the parameter η has to be very small — for numerical stability reasons — and
the convergence can be very slow.

Remark 2.7 Equation (21) also points out at problems one can observe if
the band gap (εN+1 − εN) is very small. In practice, one can overcome this
limitation by including more eigenstates than needed in the search subspace Ψ,
the highest eigenstates being empty or fractionally occupied.

To introduce an appropriate preconditioner, we start by discussing the Rayleigh
Quotient Iteration (RQI) method and some of its variants use in real-space
electronic structure calculations. RQI is a very fast algorithm to compute one
single eigenvalue of a matrix (e.g. Parlett, 1998, Chap.4). Here we describe
this method in a different form that we find more suitable for matrices of size
too large to make use of direct linear solvers. Starting from an approximate
eigenpair (ε(k), ~ψ(k)) of a discretized Hamiltonian matrix H, ε(k) given by the

Rayleigh Quotient of ~ψ(k) at step k, we look for an improved approximation
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~ψ(k+1). Specifically, we write

~ψ(k+1) =
1

ξ
(~ψ(k) + δ ~ψ

(k)
)

where the correction δ ~ψ
(k)

is chosen orthogonal to ~ψ(k). ξ is a normalization

factor. Improving ~ψ(k) by RQI requires then to find δ ~ψ
(k) ⊥ ~ψ(k) and ξ such

that

(
H − ε(k)

) 1

ξ
(~ψ(k) + δ ~ψ

(k)
) = ~ψ(k). (22)

We eliminate ξ by projecting the whole equation onto (~ψ(k))⊥ and then rewrite
it as

(I − ~ψ(k)(~ψ(k))T )
(
H − ε(k)

)
δ ~ψ

(k)
= −

(
H − ε(k)

)
~ψ(k). (23)

By the properties of the Rayleigh Quotient, the projector on the right hand
side of the equation has been omitted.

Remark 2.8 Eq.(23) is the same equation used to define the iterative correc-
tions in the Jacobi-Davidson method (Sleijpen and Van Der Vorst, 1996).

This algorithm can be generalized to the simultaneous search of N eigenfunc-
tions, with possible degeneracy of some eigenvalues (Descloux et al., 1998;
Fattebert, 1998). The idea is to replace the Rayleigh quotient by the Rayleigh-
Ritz (RR) procedure (e.g. Parlett, 1998, Ch. 11) and to look for correc-
tions orthogonal to the whole subspace Ψ(k) of trial eigenfunctions. Denoting
Ψ(k) =

(
~ψ

(k)
1 , . . . , ~ψ

(k)
N

)
as a matrix made of vector columns ~ψ

(k)
j , we can write

the following iterative algorithm:

Algorithm 2.1 (1) Let Ψ(0) be a trial subspace of dimension N .
(2) For k = 0, 1, 2, . . ., do:

(a) Rayleigh-Ritz for H in the subspace Ψ(k) → (ε
(k)
j , ~ψ

(k)
j ), j = 1, . . . , N

(b) For j = 1, . . . , N, compute δ ~ψ
(k)

j ⊥ Ψ(k) solution of

(I −Ψ(k)Ψ(k)T )(H − ε
(k)
j )δ ~ψ

(k)

j = −(H − ε
(k)
j )~ψ

(k)
j , (24)

(c) Define Ψ(k+1) =
(

~ψ
(k)
1 + δ ~ψ

(k)

1 , . . . , ~ψ
(k)
N + δ ~ψ

(k)

N

)
.

An exact solution of Eq.(24) would lead to a locally quadratic convergence
rate close to the solution of the eigenvalue problem for a non self-consistent
(i.e. linear) Hamiltonian as proved in Fattebert (1998). Such an algorithm

17



has actually been applied in Fattebert (1996, 1999), where the linear systems
are solved by multigrid. Slightly different versions have been proposed by Jin
et al. (1999) and Ancilotto et al. (1999) who omit in particular the projector
in Eq.(24). These approaches have to deal with the difficult question of how
to define meaningful potentials — and sometimes eigenfunctions — on very
coarse grids. Briggs et al. (1996) proposed to keep only the Laplacian in the
Hamiltonian operator on the coarse grids. In this approach, the multigrid V-
cycles can be seen as a preconditioner or inexact solver. Such an approach can
be very efficient for self-consistent Hamiltonians, since an accurate solution for
Eq.(24) is not always useful when the operator changes at each iteration. This
point of view has been more precisely formulated in Fattebert and Bernholc
(2000) where the potential operator is used only once at the beginning of the
multigrid cycle to compute the residual. The main advantage of the latter
approach is that the operator in Eq.(24) then does not depend on j and can
be used in any nonorthogonal representation Φ of the trial subspace.

Let us now focus on the preconditioning approach. Looking at the correction
equation (24), we note that the right hand side is the steepest descent direction
for the minimization problem with orthonormality constraints associated with
the KS eigenvalue problem (3). We note it (−~r

(k)
j ), ~r

(k)
j being the residual of

the eigenvalue problem. In a SD approach, δ ~ψ
(k)

j would be given by −~r
(k)
j /εmax

where εmax is the largest eigenvalue of H. However, from the point of view of
the inverse iteration method, an optimal correction is given by

δ ~ψ
(k)

j = −((I −Ψ(k)Ψ(k)T )(H − ε
(k)
j )

Ψ(k)⊥
)−1~r

(k)
j . (25)

Thus one can consider a preconditioner K that approximates the operator

(I −Ψ(k)Ψ(k)T )(H − ε
(k)
j )

Ψ(k)⊥
. (26)

A close look at the Hamiltonian operator shows that for high energy states,
the Laplacian is the dominant part, and the corresponding eigenfunctions are
essentially similar to those of the Laplacian, i.e. plane waves perturbed by a
relatively weak potential. It means that the operator −1

2
∇2 is a good approx-

imation of (H − ε
(k)
j ) in Ψ(k)⊥ for 1 ≤ j ≤ N , at least close to convergence, so

that one can choose

K ∼ (I −Ψ(k)Ψ(k)T )(−1

2
∇2)

Ψ(k)⊥
= (I − Φ(k)S−1Φ(k)T )(−1

2
∇2)

Φ(k)⊥
.(27)

In real-space, one can associate frequencies with grid resolution. Applying
a single grid iterative method — like Jacobi or Gauss-Seidel — to solve a
Poisson problem, one essentially obtains the high frequency components of the
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solution, the one that we cannot represent on a coarser grid. Using multigrid
V-cycles based on such a smoother, we can solve the problem for components
of lower frequencies by visiting coarser grids (Brandt, 1977). Furthermore, by
choosing a limited number of grids, one can select the components that we
want to solve for. Following this heuristic argument, we define the application
of the preconditioner K−1 to ~r

(k)
j as an iterative multigrid solver for the Poisson

problem (Fattebert and Bernholc, 2000)

−1

2
∇2δ ~ψ

(k)

j = −~r
(k)
j (28)

limited to the finest grids. For practical calculations, using 2 coarse grids

is often optimal. We start the process with an initial trial solution δ ~ψ
(k)

j =

−α~r
(k)
j . Its main goal is to introduce some low frequency components in the

correction δ ~ψ
(k)

j . The coefficient α is defined by looking at the initial guess as
the steepest descent correction one would make if the whole calculation was
done on the coarse grids not visited during the V-cycles. As a smoother in the
V-cycles, the Jacobi method is appropriate because of its inherent parallelism.

In Fig. 3, we present the convergence history of the error on the total energy
for various discretization grids for an 8 atoms diamond cell self-consistent
calculation. We use the PSD algorithm with the multigrid preconditioner de-

scribed above, doing for each correction δ ~ψ
(k)

j and at each SC iteration 1
V-cycle with 2 pre-smoothing and 2 post-smoothing. The grid-independence
of the convergence rate is observed. All the calculations use the same coarsest
grid 6 × 6 × 6 for the multigrid preconditioning, and the same total number
of states (16 occupied+ 8 unoccupied) N = 24. The initial trial functions are
random functions.

Remark 2.9 Preconditioners based on a similar idea have been developed for
PW calculations (Teter et al., 1989; Fernando et al., 1989; Chetty et al., 1995).
Since the numerical basis functions in PW are eigenfunctions of the Laplacian
operator, efficient simple diagonal preconditioners can be designed for PW.

A different preconditioner was proposed by Saad et al. (1996) in conjunction
with a Lanczos algorithm. Realizing that the eigenfunctions corresponding to
the lowest eigenvalues are in general smoother than the others, they proposed
to apply a low frequency filter directly to the trial eigenfunctions. This is done
on a single grid in real-space by an averaging of the value of a function at every
grid point with the values at its neighboring points. They note however that
this preconditioner is probably not always sufficient, in particular when a large
number of eigenfunctions is required and the highest eigenvalues of interest
correspond to eigenfunctions presenting a lower degree of smoothness.
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Fig. 3. Convergence rate for a diamond cell calculation (8 carbon atoms) for 3
different discretization grids.

2.6 Energy and forces

To optimize molecular geometries, or run molecular dynamics and measure
physical quantities at finite temperature, it is important to be able to compute
the forces acting on the atoms in any configuration. To derive expressions for
these forces, we start by some considerations on the total energy of a physical
system. In DFT, the total energy of a system can be expressed as the sum of
three terms

Et = EKS[Φ, {~Ra}Na
a=1] + Eions[{~Ra}Na

a=1] +
1

2

Na∑

a=1

Ma
~̇R

2

a (29)

where Eions, the electrostatic energy between ions of charges Zi, is given by

Eions =
1

2

Na∑

a,b=1,a6=b

ZaZb

|~Ra − ~Rb|
, (30)

and Ma denotes the mass of the ion in ~Ra. In the KS energy EKS, the contri-
bution due to the interaction between electrons and ions is given by the sum
of two terms associated to the local and nonlocal parts of the pseudopotential

Eps =
∫

Ω

vlocal
ps (~r)ρe(~r)d~r + Tr(ΦT VnlΦρ(Φ)) = Elocal

ps + Enl
ps. (31)
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It is computationally more efficient to compute the electrostatic term Ees by
solving a Poisson problem. In order to deal with a neutral charge, it is a
standard procedure to add to the system smeared core charges centered at
atomic sites,

ρa(~r) = − Za

(
√

πra
c )

3
exp


−|~r −

~Ra|2
(ra

c )
2


. (32)

The sum of these charges, ρs, neutralizes the electronic charge by generating
a total potential

vs(~r) =
Na∑

a=1

−Za

|~r − ~Ra|
erf


 |~r − ~Ra|

ra
c


. (33)

We then compute the Hartree potential vH as the solution of a Poisson problem
for a neutral total charge ρe + ρs,

−∇2(vH + vs)(~r) = 4π(ρe + ρs)(~r) (34)

with periodic or Dirichlet boundary conditions. This problem can be efficiently
solved on the discretization grid in O(N) operations by the multigrid method
(Brandt, 1977).

With the introduction of smeared neutralizing core charges, one can write

Eions =
1

2

Na∑

a,b=1

∫

R3

ρa(~r − ~Ra)ρb(~r
′ − ~Rb)

|~r − ~r′| d~rd~r′ − Eself + Ediff (35)

where Eself is the self-interaction of the core charges,

Eself =
1

2

Na∑

a=1

∫

R3

ρa(~r − ~Ra)ρa(~r
′ − ~Ra)

|~r − ~r′| d~r =
1√
2π

Na∑

a=1

Z2
a

(ra
c )

2
, (36)

and

Ediff =
1

2

Na∑

a,b=1,a6=b


 ZaZb

|~Ra − ~Rb|
−

∫

R3

ρa(~r − ~Ra)ρb(~r
′ − ~Rb)

|~r − ~r′| d~rd~r′



=
Na∑

a,b=1,a<b

ZaZb

|~Ra − ~Rb|
erfc


 |~Ra − ~Rb|√

(ra
c )

2 + (rb
c)

2


 . (37)
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We then have, for ra
c sufficiently small compared to Ω,

Ees + Elocal
ps + Eions

=
1

2

∫

Ω

ρe(~r)ρe(~r
′)

|~r − ~r′| d~rd~r′ +
∫

Ω

vlocal
ps ρe(~r)d~r

+
1

2

Na∑

a,b=1,a6=b

∫

R3

ρa(~r − ~Ra)ρb(~r
′ − ~Rb)

|~r − ~r′| d~rd~r′ − Eself + Ediff

≈ 1

2

∫

Ω

(ρe(~r) + ρs(~r))(ρe(~r
′) + ρs(~r

′))
|~r − ~r′| d~rd~r′ −

∫

Ω

ρe(~r)ρs(~r
′)

|~r − ~r′| d~rd~r′

+
∫

Ω

vlocal
ps (~r)ρe(~r)d~r − Eself + Ediff

=
1

2

∫

Ω

(ρe(~r) + ρs(~r))(vH + vs)(~r)d~r

+
∫

Ω

(vlocal
ps − vs)(~r)ρe(~r)d~r − Eself + Ediff . (38)

Knowing the ground state electronic structure for a given atomic configuration
{~Ra}Na

a=1, one can compute the internal force acting on the ion I by deriving

the total energy with respect to the atomic coordinates ~RI ,

~FI = − d

d~RI

Et(Φ, {~Ra}Na
a=1). (39)

Using the property that Φ is the minimum of the functional E, one shows that

~FI = − ∂

∂ ~RI

Et(Φ, {~Ra}Na
a=1) (40)

(Hellmann-Feynman forces, Feynman (1939)). Since the electronic structure
does not explicitly depend on the atomic positions, Eq.(40) means that the
forces can be computed from a single ground state calculation, by deriving the
atomic potentials only.

Remark 2.10 To obtain Eq. (40), we also use the fact that the numerical rep-
resentation of Ψ does not explicitly depend on the atomic positions since the
grid is atom independent. For atom-centered orbitals moving with the atoms,
this is not true anymore and additional terms (Pulay forces) have to be in-
cluded.
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From Eq.(38) and (40), using Eq. (34), we obtain the total force acting on
atom I in the form

~FI =
∫

Ω

(vH(~r) + vs(~r))
d

d~RI

ρsd~r +
∫

Ω

d

d~RI

(vlocal
ps − vs)ρe(~r)d~r

+
∂

∂ ~RI

Tr(ΦT VnlΦρ(Φ)) +
d

d~RI

Ediff . (41)

Writing the forces in this form lets appear the functions (vlocal
ps − vs) and ρs

which are localized in real-space. This can be directly used to reduce the
complexity of the computation of the forces on a grid. In principle all the
derivatives with respect to ~RI in Eq.(41) can be computed analytically. In
practice, because of the filtering of the pseudopotentials, the derivatives have
to be evaluated numerically on the filtered pseudopotentials.

Remark 2.11 The sum of the forces over all the atoms should be zero if no
external force is applied. In practice, the use of a finite grid introduces small
errors (see Sec.2.4) and provides an estimate of the accuracy of the forces.

2.7 Born-Oppenheimer molecular dynamics

To perform Born-Oppenheimer molecular dynamics simulations of quantum
systems described by the KS equations, we compute the forces acting on
the ions according to Eq.(41) and let the system evolve accordingly. The
ions evolve like classical particles surrounded by quantum electrons (Born-
Oppenheimer approximation). The error in the energy is second order with
respect to the error in the electronic wave functions, but the error in the forces
is first order. It means that one should be particularly careful in the compu-
tation of the ground state of the KS energy functional for the each atomic
configuration at each iteration. It is particularly important to have accurate
forces to ensure a perfect conservation of the total energy of the system in a
microcanonical simulation.

As shown by Jing et al. (1994) and Briggs et al. (1996), the computation of
the forces in FD methods is accurate enough to allow for energy conserving
microcanonical ab initio simulations. This is illustrated in Fig. 4 where we
show the evolution of the energy during a molecular dynamics simulation of a
Si5 cluster. To avoid any systematic drift of the energy due to the integration
scheme, the equations of motions were integrated numerically using the time
reversible Verlet’s second order algorithm (e.g. Heermann, 1990, Chap.3)

~R
(n+1)
I = 2~R

(n)
I − ~R

(n−1)
I + ~F

(n)
I (4t)2/MI
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Fig. 4. Molecular dynamics simulation of a Si5 cluster. The total energy (top) shows
fluctuations of the order 10−4a.u., but no systematic drift. The KS energy is also
plotted (bottom).

A grid spacing h = 0.56Bohr and a time step 4t = 80a.u. were used for this
simulation.

2.8 Localized orbitals

Formulating the minimization problem in terms of non-orthogonal functions
Φ instead of the Ritz functions Ψ, one can formally impose localization con-
straints on Φ to reduce the cost of the calculation. This is one of the most
popular method to obtain a linear scaling of the computational cost with
respect to the size of the system. These so called Order N methods are dis-
cussed in another article (Goedecker,this book, e.g.) and we will limit here the
discussion to the grid-based method exposed in this article.

On a real-space grid, spatial localization can be imposed by forcing each orbital
to be zero outside of a spherical region centered on a particular ion (Hoshi
and Fujiwara, 1997; Fattebert and Bernholc, 2000). Such a truncation will
linearize the computational cost of D(Φ) in Eq. (16) and ρe in Eq. (11), the most
expensive operations in the minimization algorithm. It also reduces to O(N)
the storage requirements for the wave functions. Of course, this reduction in
computational cost does not come for free. It introduces some approximation
error that one expects to keep within a certain tolerance. It means in particular
that one cannot choose the localization regions arbitrarily small.

The application of the compact FD Laplacian operator to a wave function
localized in a sphere of radius Rc generates a function localized in a sphere of
radius Rc+h

√
2, which is used as the localization radius for Hφj. This trunca-

tion suppresses some components of Hφj that are generated by the non-local,
short-range projectors of the pseudopotential operator. These components are

24



lost in the correction of the wave functions since the latter should remain lo-
calized. However, they are included exactly in the computation of the matrix
Θ and the total energy by writing H(Φ) as the sum of two matrices

H(Φ) = ΦT (H − Vnl)Φ + ΦT VnlΦ,

which isolates the non-local potential Vnl in the second term. This second term
is easily computed in O(N) operations using only the nonzero terms < φj|vi >.
Therefore, the only approximation in this approach is the use of a localization
radius to limit the spatial extent of each non-orthogonal orbital.

Since the eigenfunctions are in general not localized, the matrix C that solves
Eq.(8) is not sparse and the computation of C requires O(N3) operations.
To linearize the cost of the whole calculation, one could impose localization
constraints on the density matrix, requiring ρ̄

(Φ)
ij = 0 if the localization regions

of orbitals i and j are separated by a distance larger than a truncation radius
Rρ as in Hernandez and Gillan (1995). This can be imposed at each step of
the iterative minimization in order to achieve linear scaling. Such a truncature
is justified by the exponential decay of ρ(~r, ~r′) as |~r − ~r′| → ∞ in insulators
or metals at a finite temperature (Ismael-Beigi and Arias, 1999). However, for
M À N , the full evaluation of S−1, Θ or ρ̄(Φ), even with an order N3 algorithm,
constitutes a small fraction of the total calculations for a large range of system
sizes. Since a good accuracy can be obtained only by keeping the number of
non-zero elements in ρ̄ much larger than in S (Millam and Scuseria, 1997),
using the sparsity of ρ̄ does not lead to much gain in this context.

Remark 2.12 If an exact and explicit O(N3) diagonalization is performed, in
Eq.(8), partially occupied and unoccupied orbitals can be used, which permits
calculations for metallic as well as semiconducting systems. However, calcula-
tions for metals may require more localized orbitals or larger localization radii
for an accurate description of their electronic structure.

For systems with N > 1000, solving Eq.(8) on a single processor becomes
very expensive, if required at each self-consistent iteration. However, for fully
parallel calculations, it is natural to also parallelize the N × N submatrices
operations. This can be done using standard libraries, such as PBLAS (Parallel
Basic Linear Algebra Subprograms) and ScaLapack (Blackford et al., 1997).

Remark 2.13 According to PBLAS and ScaLapack requirements, S,H(Φ), Θ
and ρ̄(Φ) are stored as full N ×N matrices, distributed among the processors.
Although most of the operations on these matrices can be optimized using their
sparsity — except the diagonalization in Eq. (9)— the full storage approach
is adequate for a substantial range of calculations. It is also the easiest im-
plementation given the available standard numerical libraries for distributed
memory multiprocessors computers. The solution of the eigenvalue problem
(9) is clearly the dominant part of these O(N3) operations.
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Fig. 5. Contour plot of the square of a typical localized orbital in the plane defined by
the cylindrical surface of a (5,5) nanotube. The external circle shows the localization
region (radius 8 Bohr).

In the iterative minimization of the KS energy functional, the truncature of
the orbitals modifies the correction directions in a way that can slow down the
convergence process. On the other hand, the localization constraints break the
invariance in the representation of the occupied subspace and may generate
multiple local minimas for EKS (Goedecker, this book). One way to deal with
these issues is to choose localization radii large enough so that one can easily
end up in a minima of energy close enough to the true global minima —
the one obtained without localization constraints. For example, Fattebert and
Bernholc (2000) were able to compute accurately energy differences in a carbon
nanotube using a localization radius of 8 Bohr.

Since the method described above allows to determine the eigenfunctions of
the Kohn-Sham equations in a basis of localized functions — according to
Eq.(7)—, it can be considered as a generalization of ab initio methods that use
a linear combination of atomic orbitals (LCAO) to expand the eigenfunctions:
ψj =

∑
i ciφi. The main difference is that grid-based local functions φi are

defined by their values on a grid and are variationally optimized according to
their environment. In particular, the functions φi have many more degrees of
freedom and one can systematically increase the accuracy of the calculations
by mesh refinement or expansion of the localization domain. An example of
such an orbital computed for a (5,5) carbon nanotube is plotted in Fig.5. The
total number of basis functions in high precision calculations is thus much
smaller than in LCAO approaches and minimizes the O(N3) part.
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3 Quantum transport

3.1 Electron transmission and Green’s functions

Let us consider a system composed of a conductor, C, connected to two semi-
infinite leads, R and L, as in Fig. 6. A fundamental result in the theory of
electronic transport is that the conductance through a region of interacting
electrons (the C region in Fig. 6) is related to the scattering properties of the
region itself via the Landauer formula (Landauer, 1970)

C =
2e2

h
T , (42)

where T is the transmission function and C is the conductance. The former
represents the probability that an electron injected at one end of the conductor
will transmit to the other end. In principle, we can compute the transmission
function for a coherent conductor 1 starting from the knowledge of the scat-
tering matrix, S. The latter is the mathematical quantity that describes the
response at one lead due an excitation at another. In principle, the scattering
matrix can be uniquely computed from the solution of the Schroedinger equa-
tion and would suffice to describe the transport processes we are interested
in this work. However, it is a general result of conductance theory that the
elements of the S-matrix can be expressed in terms of the Green’s function of
the conductor (Datta, 1995; Fisher and Lee, 1981; Meir and Wingreen, 1992)
which, in practice, can be sometimes simpler to compute.

Let us consider a physical system represented by an Hamiltonian H. Its
Green’s function for an energy E is defined by the equation

(E ± iη −H)G(~r, ~r′) = δ(~r, ~r′) (43)

where iη > 0 is an infinitesimal imaginary part added to the energy to incor-
porate the boundary conditions into the equation. The solution with + sign is
the retarded Green’s function Gr, while the solution with − sign is called ad-
vanced Green’s function Ga. The transmission function can then be expressed
in terms of the Green’s functions of the conductors and the coupling of the
conductor to the leads in a simple manner (see Datta, 1995, p.141 and ff.)

T = Tr(ΓLGr
CΓRGa

C), (44)

1 A conductor is said to be coherent if it can be characterized by a transmission
matrix that relates each of the outgoing wave amplitudes to the incoming wave
amplitudes at a given energy
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where G
{r,a}
C are the retarded and advanced Green’s functions of the conductor,

and Γ{L,R} are functions that describe the coupling of the conductor to the
leads.

In the following we are going to restrict the discussion to discrete systems
that we can describe by ordinary matrix algebra. More precisely, we are going
to work with matrices representing a physical system in a basis of localized
electronic orbitals centered on the atoms constituting the system. It includes
in particular the tight-binding model.

For a discrete media, the Green’s function is then solution of a matrix equation

(ε−H)G = I (45)

where ε = E ± iη with η arbitrarily small and I is the identity matrix. To
simplify the notations, we drop the exponent {a, r} referring to advanced
and retarded functions when implicitly defined by ε. For an open system,
consisting of a conductor and two semi-infinite leads (see Fig. 6), the above
Green’s function can be partitioned into sub-matrices that correspond to the
individual subsystems




gL gLC gLCR

gCL GC gCR

gLRC gRC gR




=




(ε− hL) −hLC 0

−h∗LC (ε−HC) −hCR

0 −h∗CR (ε− hR)




−1

, (46)

where the matrix (ε−HC) represents the finite “isolated” conductor (with no
coupling elements to the leads), (ε− h{R,L}) represent the semi-infinite leads,
and hCR and hLC are the coupling matrices between the conductor and the
leads, and h∗ denotes the familiar conjugate transpose of h. As a convention,
we use lower case letters for (semi-)infinite matrices and upper case for finite
dimension matrices. In Eq.(46) we have made the assumption that there is no
direct interaction between the left and right leads. From this equation it is
straightforward to obtain an explicit expression for GC

GC = (ε−HC − ΣL − ΣR)−1 (47)

where the finite-dimension matrices

ΣL = h∗LC(ε− hL)−1hLC , ΣR = hRC(ε− hR)−1h∗RC (48)

are defined as the self-energy terms due to the semi-infinite leads. The self-
energy terms can be viewed as effective Hamiltonians that arise from the
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Fig. 6. A conductor described by the Hamiltonian HC , connected to two semi-infinite
leads L and R, through the coupling matrices hLC and hCR.

coupling of the conductor with the leads. The coupling functions Γ{L,R} can
then be obtained as (Datta, 1995)

Γ{L,R} = i[Σr
{L,R} − Σa

{L,R}], (49)

where the advanced self-energy Σa
{L,R} is the conjugate transpose of the re-

tarded self-energy Σr
{L,R}. The core of the problem lies in the calculation of

the self-energies of the semi-infinite leads.

It is well known that any solid (or surface) can be viewed as an infinite (semi-
infinite in the case of surfaces) stack of principal layers with nearest-neighbor
interactions (Lee and Joannopoulos, 1981a,b). This corresponds to transform-
ing the original system into a linear chain of principal layers. For a lead-
conductor-lead system, the conductor can be considered as one principal layer
sandwiched between two semi-infinite stacks of principal layers. The next three
sections are devoted to the computation of the self-energies using the principal
layers approach for different geometries.

3.2 Transmission through a bulk system.

Within the principal layer approach, the matrix elements of Eq.(45) between
layer orbitals yield a series of matrix equations for the Green’s functions

(ε−H00)G00 = I + H01G10

(ε−H00)G10 = H∗
01G00 + H01G20

. . .

(ε−H00)Gn0 = H∗
01Gn−1,0 + H01Gn+1,0

(50)

where the finite dimension matrices Hnm and Gnm are formed by the matrix
elements of the Hamiltonian and Green’s function between the layer orbitals.
We assume that in a bulk system H00 = H11 = . . . and H01 = H12 = . . ..
Following Lopez-Sancho et al. (1984, 1985), this chain can be transformed
in order to express the Green’s function of one individual layer in terms of
the Green’s function of the preceding (or following) one. This is done via the
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introduction of the transfer matrices T and T , defined such that

G10 = TG00

and
G00 = TG10.

Using these definitions, we can write the bulk Green’s function as (Garcia-
Moliner and Velasco, 1992)

G(E) = (ε−H00 −H01T −H∗
01T )−1. (51)

The transfer matrix can be easily computed from the Hamiltonian matrix
elements via an iterative procedure, as outlined in Lopez-Sancho et al. (1984).
In particular T and T can be written as

T = t0 + t̃0t1 + t̃0t̃1t2 + . . . + t̃0t̃1 · · · t̃n−1tn

T = t̃0 + t0t̃1 + t0t1t̃2 + . . . + t0t1 · · · tn−1t̃n

where ti and t̃i are defined via the recursion formulas

ti = (I − ti−1t̃i−1 − t̃i−1ti−1)
−1t2i−1,

t̃i = (I − ti−1t̃i−1 − t̃i−1ti−1)
−1t̃2i−1

and

t0 = (ε−H00)
−1H∗

01,

t̃0 = (ε−H00)
−1H01.

The process is repeated until tn, t̃n ≤ δ with δ arbitrarily small. Usually no
more than 5 or 6 terms are required to converge the above sums.

In the hypothesis of leads and conductors being of the same material (bulk
conductivity), we can identify one principal layer of the bulk system with the
conductor C, so that H00 ≡ HC . If we compare Eq.(51) with Eq. (47), we
obtain the expression for the self-energies of the conductor-leads system

ΣL = H∗
01T , ΣR = H01T. (52)

The coupling functions are then obtained from the sole knowledge of the trans-
fer matrices and the coupling Hamiltonian matrix elements: ΓL = −Im(H∗

01T )

30



BA
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

I
Fig. 7. Sketch of a system containing an interface between two media A and B. I
is the interface region for which we need to compute the Green’s function GI . I is
composed of two principal layers, one in each side of the interface (dashed area).

and ΓR = −Im(H01T ) (Buongiorno Nardelli, 1999).

Remark 3.1 In the application of the Landauer formula, it is customary to
compute the transmission probability from one lead to the other assuming that
the leads are connected to a reflectionless contact whose electron energy dis-
tribution is known (see for instance Datta, 1995, p. 59 and ff.).

3.3 Transmission through an interface.

The procedure outlined above can also be applied in the case of electron
transmission through an interface between two different media A and B. To
study this case we make use of the Surface Green’s Function Matching (SGFM)
theory, pioneered by Garcia-Moliner and Velasco (1991, 1992).

We have to compute the Green’s function GI , where the subscript I refers to
the interface region composed of two principal layers — one in each media —
(see Fig.7). Using the SGFM method, GI is calculated from the bulk Green’s
function of the isolated systems, GA and GB, and the coupling between the
two principal layers at the two sides of the interface, HAB and HBA. Via
the calculation of the transmitted and reflected amplitudes of an elementary
excitation that propagates from medium A to medium B, it can be shown
that the interface Green’s function obeys the equation (Garcia-Moliner and
Velasco, 1992, Ch.4)

GI =




GAA GAB

GBA GBB


 =




ε−HA
00 − (HA

01)
∗T −HAB

−HBA ε−HB
00 −HB

01T




−1

. (53)

Once the interface Green’s function is known, we can compute the transmission
function in terms of block super-matrices

T (E) = Tr(ΓAGr
ABΓBGa

BA)

with Γ{A,B} = i[Σr
{A,B} − Σa

{A,B}], Σ{A,B} given by the analogous of Eq.(52)
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for the two semi-infinite sections, and Ga
BA = (Gr

AB)∗ (Buongiorno Nardelli,
1999).

3.4 Transmission through a left lead-conductor-right lead (LCR) system.

Within the SGFM framework, the approach described in the previous section
can be extended to the case of multiple interfaces and superlattices (Garcia-
Moliner and Velasco, 1991, 1992) with little complication. For the calcula-
tion of conductances in realistic experimental geometry, the method can be
expanded to the general configuration of a Left-lead-Conductor-Right-lead
(LCR) systems — as displayed in Fig.6. In the language of block matrices and
principal layers, outlined in the previous sections, the LCR Green’s function
obeys the equation

GLCR =




GL GLC GLR

GCL GC GCR

GRL GRC GR




=




ε−HL
00 − (HL

01)
∗T −HLC 0

−HCL ε−HC −HCR

0 −HRC ε−HR
00 −HR

01T




−1

. (54)

where H{L,R}
nm are the block matrices of the Hamiltonian between the layer

orbitals in the left and right leads respectively, and T{L,R} and T {L,R} are
the appropriate transfer matrices. The latter are easily computed from the
Hamiltonian matrix elements via the iterative procedure already described
in the bulk case (Sec.3.2). Correspondingly, HLC and HCR are the coupling
matrices between the conductor and the leads principal layers in contact with
the conductor.

As in Sec.3.1, it is straightforward to obtain in the form of Eq.(47), GC =
(ε−HC −ΣL−ΣR)−1, where ΣL and ΣR are the self-energy terms due to the
semi-infinite leads, and identify (Buongiorno Nardelli and Bernholc, 1999)

ΣL = H∗
LC(ε−HL

00 − (HL
01)

∗TL)−1HLC ,

ΣR = HCR(ε−HR
00 −HR

01TR)−1H∗
CR.

(55)

The transmission function in the LCR geometry can then be derived from
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Eq.(44) and (49).

Remark 3.2 The knowledge of the conductor’s Green’s function GC gives also
direct information on the electronic spectrum of the system via the spectral
density of electronic states

N(E) = −(1/π)Im[Tr(GC(E))].

Remark 3.3 We have assumed a truly one-dimensional chain of principal
layers, which is physical only for systems like nanotubes or quantum wires
that have a definite quasi-one-dimensional character. The extension to a truly
three-dimensional case is straightforward using Bloch functions wave vectors
~k‖ parallel to the layers (in the directions perpendicular to the conduction).
The introduction of the principal layer concept implies that along the direction
of the conduction the system is described by an infinite set of wave vectors
~k⊥. The above procedure effectively reduces the three-dimensional system to a
set of non-interacting linear-chains, one for each ~k‖ (Lee and Joannopoulos,
1981a,b). We can then use the usual k-point summation techniques to evaluate,
for instance, the quantum conductance

T (E) =
∑

~k‖

w~k‖
T~k‖

(E)

where w~k‖
are the relative weights of the different wave vectors ~k‖ in the irre-

ducible wedge of the surface Brillouin zone (Baldereschi, 1973).

3.5 Generalization to nonorthogonal orbitals.

In the previous sections we have assumed to have a Hamiltonian representa-
tion in terms of orthogonal orbitals. The expression for the Green’s and trans-
mission functions of a bulk system described by a general non-orthogonal
localized-orbital Hamiltonian follows directly from the procedure outlined
in Section 3.2. All the quantities can be obtained making the substitutions
(ε −H00) → (εS00 −H00) and H01 → − (εS01 −H01). Here, we introduce
the matrices S that represent the overlap between the localized orbitals. With
this recipe, the equation chain (50) now reads

(εS00 −H00)G00 = I − (εS01 −H01)G10,

(εS00 −H00)G10 = −(εS∗01 −H∗
01)G00 − (εS01 −H01)G20,

. . .

(εS00 −H00)Gn0 = −(εS∗01 −H∗
01)Gn−1,0 − (εS01 −H01)Gn+1,0.
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From here, via the same series of algebraic manipulations as in the orthogonal
case, we obtain the Green’s function

G =
[
(εS00 −H00) + (εS01 −H01)T + (εS∗01 −H∗

01)T
]−1

,

and from the latter we can identify the self-energies

ΣL = −(εS∗01 −H∗
01)T , ΣR = −(εS01 −H01)T.

The above procedure can be extended to the case of the transmission through
an interface or a LCR junction. For the latter case, we obtain

ΣL = (εSLC −HLC)∗

[εSL
00 −HL

00 + (εSL
01 −HL

01)
∗TL]−1(εSLC −HLC),

(56)

ΣR = (εSCR −HCR)

[εSR
00 −HR

00 + (εSR
01 −HR

01)TR]−1(εSCR −HCR)∗,

where H{L,R}
nm are the matrix elements of the Hamiltonian between layer or-

bitals in the left and right leads, respectively. S{L,R}
nm are the corresponding

overlap matrices and T{L,R} and T {L,R} are the appropriate transfer matri-
ces. The latter are easily computed from the Hamiltonian and overlap ma-
trix elements via the usual iterative procedure (see Section 3.2) Correspond-
ingly, HLC , HCR, SLC and SCR are the coupling and overlap matrices for the
conductor-leads assembly.

4 Applications: Conductivity from ab initio local orbital Hamilto-
nian

4.1 Methodology

The procedure described in Section 3 requires the knowledge of the Hamil-
tonian and overlap matrix elements between layer orbitals of the conductor,
and the left and right leads. In ab initio density-functional calculations, such
matrix elements can be computed using the O(N)-like algorithm described in
Section 2.8. In this context the numerical orbitals — defined on a uniform
grid in real-space — are centered on atoms and localized in spherical regions
of radius RL around the respective atoms. Since the orbitals are variationally
optimized on the grid according to their environment until they accurately
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describe the ground state of the system, it allows us to use only a small num-
ber of orbitals per atom, much smaller than in LCAO-based calculations. The
size of the matrices that enter in the quantum conductance calculation and
the computational cost of the whole procedure are thus minimized. In order
to ensure fast convergence and accuracy – even for metallic systems – we use
both occupied and unoccupied orbitals.

The matrices that enter the electronic transport calculation of a LCR sys-
tem are computed in two steps. In the first calculation, we compute the
ground state of the bare leads in a supercell with periodic boundary conditions.
From this calculation we extract the Hamiltonian in the basis of the localized
nonorthogonal orbitals and the overlap matrices required for the computation
of the self-energies. We then perform a second ground state calculation in a
supercell with periodic boundary conditions containing the conductor and one
principal layer of the leads. In this calculation, the orbitals in the leads are
kept the same as in the bare lead calculation, in order to extract the matrix
elements describing the coupling between the conductor and the leads. This
procedure fully accounts for the electronic structure of the conductor and the
interaction between the conductor and the leads, provided that the lead region
is large enough to avoid spurious interactions between periodic images of the
contacts. In order to have interactions between the nearest-neighbor princi-
pal layers only, the width of the layers has to be sufficiently large compared
to the localization regions. On the other hand, the localization regions have
to be large enough to ensure an accurate solution of the density-functional
equations. Moreover, in the Green’s function matching procedure one has to
carefully align the Fermi levels of both systems in order to avoid spurious
bias effects. Provided that in the conductor-lead calculation the lead region
is large enough to recover bulk-like behavior far from the interfaces, we align
the macroscopic average of the electrostatic potentials in the bare lead and
in the conductor-lead geometry. This ensures a seamless conductor-lead ge-
ometry and prevents the spurious bias. An equivalent procedure is often used
to extract band offsets in superlattice calculations (Baldereschi et al., 1988;
Buongiorno Nardelli et al., 1997).

Remark 4.1 If a principal layer is composed of N orbitals, the calculation of
the Green’s function requires a matrix inversion that scales as O(N3). How-
ever, for very large systems, the localization of the orbitals allows us to divide
a principal layer into thiner layers and compute the quantities of interest in
largely O(N) fashion (Anantram and Govindan, 1998).
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Fig. 8. Left: Electronic band structure of a metallic nanotube. Note the crossing
of the bands at the Fermi energy. Middle: corresponding Density of States. Right:
Quantum conductance spectrum. Note the metallic plateau of conductance equal
to 2G0.

4.2 Example: carbon nanotube on metallic contacts

To illustrate the above ab initio methodology we use the example of trans-
port behavior of nanotube-metal contacts studied by Buongiorno Nardelli
et al. (2001). The problem of contacts in metal-carbon nanotubes assem-
blies is a crucial issue for technological development, and determines much
of the nanoscale device characteristics. A perfect metallic nanotube behaves
like a ballistic conductor: every electron injected into the nanotube at one end
should come out at the other end. The basic electronic properties of metallic
nanotubes imply the existence of two propagating modes for electronic trans-
mission, independent of the diameter (Bernholc et al., 2002). The electronic
conductance is then expected to be twice the fundamental quantum of con-
ductance, G0 = 2e2/h = 1/12.9 (kΩ)−1. At higher energies, the electrons are
able to probe different sub-bands, which gives rise to an increase in G that is
proportional to the number of additional bands available for transport. Hence,
G for ideal nanotubes is expected to consist of a series of ”down-and-up” steps
as a function of the electron energy, in which the position of the steps cor-
relate with the band edges. An illustration of this behavior is displayed in
Fig.8. These considerations would suggest that nanotubes should behave as
ideal device elements because of their electrical properties.

However, one of the fundamental problems that hinder a broader technological
application of carbon nanotubes is the observation that most carbon nanotube
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Fig. 9. The geometry and conductance spectrum of an infinite (5,5) nanotube de-
posited on Al(111). Adapted from Buongiorno Nardelli et al. (2001).

devices display contact resistances of the order of MΩ (Tans et al., 1997, 1998;
Martel et al., 1998; Bachtold et al., 1998), rather than kΩ, as one would expect.

What is the physical origin behind the very high contact resistance for car-
bon nanotube systems? As a prototypical example, we consider the trans-
port properties of a metallic (5,5) nanotube deposited on an Al (111) surface
in an idealized side-contact geometry, as shown in the inset of Fig.9. In or-
der to accurately account for the highly inhomogeneous environment of the
nanowire-metal junction, and to account for the charge transfer occurring at
the interface between these two dissimilar materials, it is important to use the
accurate and self-consistent ab initio description we have previously discussed.
The main characteristics of the electronic response of the system is a marked
transfer of charge from the nanotube to the metal that allows the valence band
edge of the nanotube to align with the Fermi level of the metal electrode (Xue
and Datta, 1999).

This charge transfer, which has been already observed for other experimental
systems (Tans et al., 1998; Wildoer et al., 1998; Martel et al., 1998) and
calculations (Xue and Datta, 1999; Rubio et al., 1999; Kong et al., 1999),
leads to enhanced conductivity along the tube axis and gives rise to a weak
ionic bonding between the tube and the metal. The conductance spectrum
for the coupled nanotube is displayed in Fig. 9. Although the metal contact
increases the resistance by a factor of two as compared to ideal isolated tubes,
the transmission through the system is still substantial. To further analyze the
contact resistance, we have calculated the eigenchannels (Brandbyge et al.,
1997). Among the conducting channels, i.e., those with a significant nonzero
transmission coefficient, we observe a clear distinction between channels that
are localized in the metal and those on the nanotube itself. This result reflects
the clear separation of the individual electronic wave functions of each of the
components of the system. In particular, the eigenchannel corresponding to the
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Fig. 10. Cross section of the square modulus of the electronic wave function cor-
responding to the only open eigenchannel at the Fermi level that has a sizable
component on the nanotube for the system represented in Fig.9. The other wave
functions at the Fermi level are mostly localized on the metal. Adapted from Buon-
giorno Nardelli et al. (2001).

plateau of conductance around the Fermi energy corresponds to an individual
wave function, reproduced in Fig.10, almost fully localized on the nanotube.
This implies that there is very little hybridization and intermixing between the
nanotube and the metal in the channel responsible for conduction at the Fermi
level. Thus, the conduction electron transfer between the tube and the metal
in the idealized side-contact geometry considered here is very inefficient, which
can explain the high contact resistance observed in nanotube-metal contacts.

This initial investigation has been extended to a geometry that more closely
resembles an experimental two-terminal device, with two semi-infinite contacts
connected by a nanotube bridge, 1.5 nm long. In this geometry, the system
recovers the ideal conductance of an isolated tube with two conductance chan-
nels at the Fermi energy, as shown in Fig. 11. This behavior is induced by the
alignment of the valence band edge of the nanotube with the Fermi energy
of the metal contacts, triggered by the charge transfer in the lead regions. In
this particular geometry, these conditions restore the two original eigenchan-
nels of the nanotube and thus conserve the number of conducting channels
throughout the system. It is important to note that the weak nanotube-metal
interaction, responsible for the pathologically high resistance of the nanotube-
metal assembly, is not strengthened.

Remark 4.2 In this calculation, the conductor C is made of a (5,5) carbon
nanotube composed of 120 atoms, while a principal layer of the leads is made
of the same 120 atoms carbon nanotube and of an aluminium surface of 100
atoms. The width of a principal layer is 14.7 Å and a localization radius of
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Fig. 11. The conductance spectrum of an ideal two-terminal device, as shown in
the inset. The Fermi level is taken as a reference. From Buongiorno Nardelli et al.
(2001).

5.3 Å was used for the orbitals. The LDA exchange and correlation functional
was used with the pseudopotentials by Hamann (1989).

Remark 4.3 The occurrence of a single channel in the first case is due to
the idealized geometry of an infinite nanotube on an infinite metallic surface.
The conservation of the total number of channels is ensured by the channels
localized on the metal.

These examples clearly demonstrate that the weak nanotube-metal coupling
is mostly responsible for the weak electron transport in the combined system,
and that wave vector conservation is not a significant factor (Tersoff, 1999;
Delaney et al., 1999). The weak distributed coupling also explains why the
measured contact resistance is inversely proportional to the contact length
(Tans et al., 1997; Frank et al., 1998; Anantram et al., 2000). Although the
nanotube behaves as an ideal ballistic conductor, the bonding characteristics
of the nanotube-metal system prevent an efficient electron transfer mechanism
from the nanotube to the Al contact. Indeed, inducing defects in the contact
region, e.g., by localized electron bombardment (Bachtold et al., 1998), dras-
tically increases the bonding strength of the nanotube-metal assembly and
greatly improve the performance of the device. Alternatively, mechanically
pushing the nanotube closer to the Al surface by a small amount (≈ 1 Å,
with an energy cost of ≈ 10 meV/atom) more than doubles the transmission
efficiency between the metal and the nanotube. The mechanical deformation
induces a small inward relaxation of the Al surface in the contact region, facil-
itating stronger hybridization between the nanotube and the metal contact in
the conducting channels and therefore leading to a higher transmission rate.
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