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Abstract. This paper presents an aggregation multilevel method for problems where the near-
nullspace of the operator is not known, in particular, the method does not assume that the slow-to-
converge error is locally constant. The method uses samples of slow-to-converge error to construct
its interpolation operator. The basis vectors for an aggregate are computed via a singular value
decomposition of the sample vectors over that aggregate. Compared to other methods, this method
does not require that the stiffness matrices for each aggregate (which sum to the global matrix) are
available.
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1. Introduction. Algebraic multilevel methods use complementary smoothing
and coarse grid correction for solving linear systems from discretized partial differen-
tial equations. In these methods, algebraically smooth error is the error that remains
after the smoother has been applied and that must be reduced at the next level.
The interpolation or prolongation operator P must be able to represent this smooth
error on the coarser level, i.e., P must be constructed such that the algebraically
smooth error is in the range of P . To accomplish this, multilevel methods tradi-
tionally must make assumptions about the nature of the smooth error. In algebraic
multigrid (AMG), smooth error is assumed to be locally constant or slowly varying
along strong couplings [14].

In aggregation multilevel methods for elliptic PDEs, the near-nullspace of the
discrete operator is assumed to locally form an approximate basis for the algebraically
smooth error. For second and fourth order PDEs, these near-nullspace vectors are
constants and linear functions [16]; for linear elasticity, these vectors are rigid body
modes [8]. If it is known that the solution is physically smooth, then the geometric
coordinate vectors of the grid points, x, y, and z, and monomial functions of these,
may locally represent the algebraically smooth error. Similarly, for p-version finite
elements, appropriate basis vectors are also known [13].

Algebraic multilevel methods often fail because the above assumptions do not
hold. For example, a simple scaling of the matrix will change the near-nullspace. In
other cases, the near-nullspace and the nature of the algebraically smooth error are
simply not known. Further, aggregation algebraic multilevel methods are often not
robust because the near-nullspace vectors are not sensitive to the PDE coefficients,
which may be important, for example, for anisotropic problems. (This problem is
alleviated somewhat by using an aggregation technique that is sensitive to the strength
of connection between the variables.) Finally, for aggregation methods, it may be
desirable for some problems to use basis vectors in addition to the near-nullspace
vectors. A procedure is then needed to compute and incorporate these additional
vectors.
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Recently, methods have been developed that are designed to be more robust and
more general by not making assumptions about the algebraically smooth error for
a given problem. Instead, these methods attempt to reduce some measure of the
interpolation error. Some of these methods can also add additional basis vectors
if necessary, leading to better convergence [6, 9]. We briefly review some of these
methods here.

In the energy minimization technique [17], P is constructed by directly optimizing
a constant in the subspace correction framework [18] and thus improving the conver-
gence rate. The stability and approximation inequalities are satisfied, guaranteeing
mesh-independent convergence. For finite element discretizations, the AMGe method
[4] constructs P by minimizing a measure of the interpolation error [2, 1],

min
P,v

‖u− Pv‖2
‖u‖A

, ∀u 6= 0(1.1)

where it is assumed that A is scaled to have a unit diagonal. A better minimum leads
to a better convergence rate for a two-level method. However, to be practical, the
minimization (1.1) must be localized over an aggregate of elements or grid points.
The solution turns out to involve the eigenvectors of the aggregate matrices [11, 6, 9].

For aggregation multilevel methods, a local basis for the algebraically smooth er-
ror for each aggregate is formed by the low-energy eigenvectors of the aggregate sub-
matrix. These submatrices are defined differently depending on whether grid points
or elements are aggregated. For non-overlapping aggregates of the grid points, the
aggregate submatrix is a stiffness matrix restricted to the grid points of an aggregate
[11]. P constructed this way, however, will generally not contain the near-nullspace
of the operator. For an element aggregation, the aggregate submatrix is the assem-
bled superelement corresponding to an aggregate of elements before application of the
boundary conditions [6, 9]. This approach, however, requires access to the element
stiffness matrices.

In this paper, we present a new approach for the case where no assumptions about
the algebraically smooth error can be made. We construct P based on grid point
aggregation, but instead of relying on aggregate submatrices and their low-energy
eigenvectors, our approach is to directly construct interpolation operators that will
interpolate samples of algebraically smooth error or other low-energy vectors.

For a coefficient matrix A, samples of algebraically smooth error can be gen-
erated by applying the smoother to Ae = 0, starting with a random initial guess.
Alternatively, low-energy vectors may be used, constructed cheaply by a few steps of
a Lanczos or Arnoldi procedure. Building interpolation that fits algebraically smooth
error in the AMG context is also being investigated [3].

Algebraically smooth error is also used explicitly in recently developed adaptive
multilevel methods. These methods update themselves as the algebraically smooth
error becomes revealed in the solution process. In these strategies, a few steps of
the “current” method is applied to the homogeneous problem Ax = 0 to reveal the
components of the error that are slow to converge. Versions based on both smoothed
aggregation [5] and AMG [12] have been developed. We also note that samples of
algebraically smooth error may be used to define a coarsening procedure [10].

In Section 2, the new interpolation operator is described. The interpolation is
matrix-dependent; anisotropies and physical jumps in the smoothed error are reflected
in the interpolation operator. In Section 3, results of numerical tests are shown and
discussed.
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2. Interpolation using smooth error vectors.

2.1. New interpolation operator. In this section, we describe an interpola-
tion operator based on aggregating grid points that is constructed from samples of
low-energy vectors, rather than eigenvectors of aggregate submatrices. Here, we as-
sume that the aggregates are given. We also suppose that the coefficient matrix A
at each grid level has been reordered such that the rows and columns of A for an
aggregate are ordered together and consecutively by aggregates. This will simplify
the notation in this paper.

As in smoothed aggregation [15, 16], we will smooth the tentative interpolation
operator in order to reduce the energy of the basis functions. Thus, we begin by
seeking a rectangular tentative interpolation operator of the form

P̃ =



P̃1

. . .
P̃i

. . .
P̃J


for J aggregates, where P̃i forms the tentative basis vectors for aggregate i. The P̃i

matrices are ni × ki with ni ≥ ki, and P̃ is block diagonal because the grid point
aggregates are non-overlapping.

Let S = [s1, . . . , sm] be a block of m algebraically smooth error vectors. These
vectors may be generated by applying the smoother (to be used in the multigrid
solution process) to the homogeneous equations

Ae = 0

with a random initial guess for e. When the near-nullspace of A is known, then S
should be composed of these near-nullspace vectors and the method will be essentially
the same as the smoothed aggregation method [16]. The samples S may be partitioned
as

S =



S1

...
Si

...
SJ


corresponding to the partitioning of P̃ .

Given Si, the portion of the sample vectors corresponding to aggregate i, we seek
a low-rank approximate basis P̃i for Si. Formally, we seek

min
P̃i,W

‖Si − P̃iW‖2

where P̃i has rank ki, where ki ≤ m. The minimum is achieved when

P̃iW = UkiΣkiV
T
ki



4 EDMOND CHOW

where Uki
Σki

V T
ki

is the rank ki truncated singular value decomposition of Si. By
matching variables, P̃i = Uki

, the first ki left singular vectors. We note that the
computations are small, dense SVD computations.

This technique exploits the fact that a local portion (over an aggregate) of an
algebraically smooth sample vector may have larger or smaller local energy than
the same portion of other algebraically smooth sample vectors. The truncated SVD
reduces the effect of the higher-energy portions, while capturing the desirable low-
energy components which are more typical. Using more sample vectors than ki, the
minimum required, generally improves the bases constructed for the aggregates.

Recalling (1.1), the approximate basis should be better for samples with lower
energy, i.e., we wish to have a smaller residual corresponding to samples with smaller
energy. This can be accomplished, although imprecisely, by scaling each sample vector
sj by (sT

j Asj)−1 before computing the singular value decomposition. (Empirically
this scaling was more effective than (sT

j Asj)−1/2.) This is particularly important if
the vectors have very different energy norms. Ideally, we would like to scale the local
portion of the sample vectors by their local energy norms. However, this would require
the construction of aggregate submatrices.

Finally, to reduce the energy of the basis functions, P̃ is smoothed one step by a
Jacobi smoother to construct the final P . The Jacobi smoother is

I − 4
3ρ

D−1A(2.1)

where D is the diagonal of A, and ρ is the spectral radius of D−1A estimated by a few
steps of a Lanczos or Arnoldi method. This smoothing preserves constant functions.

2.2. Number of sample vectors. The number of sample vectors is a parameter
of this method. A larger number of sample vectors will improve the convergence rate,
but this must be balanced with the cost of generating these sample vectors and the
cost of larger SVD computations.

Figure 2.1 plots the local energy of each of 20 sample vectors for a 9-node aggregate
of a 1-D isotropic diffusion operator. The sample vectors were generated by 3 steps
of symmetric Gauss-Seidel (SGS) applied to the homogeneous error equation with
random initial guesses. The figure also plots the local energies of the first, second,
and third singular vectors as the number of sample vectors increases. It is evident that
the first singular vector has the least energy compared to the second and third, and
that the energy of the first vector generally decreases when more sample vectors are
used. Interestingly, the energy of this singular vector appears to decrease when a low-
energy sample vector is generated. High-energy sample vectors do not dramatically
affect the energy of the first few singular vectors. However, after a moderate number
of sample vectors, the energy of the first singular vector then decreases very slowly.
Thus, using a very large number of sample vectors is not effective, and should be
balanced with the number of smoothing steps applied to each sample vector. This
will also be reflected in the numerical tests of the convergence rate. We note that in
these examples, the local energy of each sample is plotted. In practice, these local
energies cannot be computed if the local aggregate matrices are not known.

2.3. Example. Figure 2.2 shows a sample of algebraically smooth error and
three basis vectors produced for an anisotropic diffusion problem with Dirichlet bound-
ary conditions on a 32 × 32 grid. The direction of anisotropy is 45o (bottom left to
top right). The aggregates, shown by the lighter boundary lines, are 4×4 grid points.
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Fig. 2.1. Local energy of samples and singular vectors vs. number of sample vectors. The
energy of the first singular vector generally decreases when more samples are used, but decreases
very slowly after a moderate number of samples.

The value at each grid point is indicated by the gray-level of the grid point. For the
illustration to be clear, 20 sample vectors were used, with 20 SGS smoothing steps
for each vector.

As expected, in Figure 2.2(b), the first basis vector contains nearly locally con-
stant values over each aggregate. Some aggregates have positive values and others
negative, which explains the two different gray-levels predominant for this basis vec-
tor. It is also noticeable in the figure that at the Dirichlet boundaries there is a decay
of the basis vectors toward zero. This problem-dependent behavior is a feature of this
method.

Figure 2.2(c) shows that the second basis vector over each aggregate varies slowly
in the direction of anisotropy, like the algebraically smooth error, and varies sharply
in the cross direction, again like the smooth error. Figure 2.2(d) shows that the third
basis vector is oscillatory in the cross direction, which is very helpful in representing
the smooth error in this example. These oscillatory basis functions cannot be con-
structed from simple smooth functions such as polynomials of the coordinate vectors.
Thus, these are good basis functions for representing the algebraically smooth error
in Figure 2.2(a).

2.4. Number of basis vectors per aggregate. In the smoothed aggregation
method [16], the number of basis vectors is chosen beforehand, with each vector being
a near-nullspace vector that is known for the problem. In spectral AMGe [9] and the
method in [6], the number of basis vectors may be different for each aggregate, and
may be chosen such that (1.1) is bounded. In the method presented here, the number
of basis vectors may also be different for each aggregate, but no bound on (1.1) is
possible.

For aggregate i, the number of basis vectors may be chosen based on the singular
values from the singular value decomposition of Si. More basis vectors will improve
interpolation for the given aggregate, but increases the cost of the method.

For certain problems, a different number of basis vectors may be suitable for each
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(a) Sample of algebraically smooth
error

(b) First basis vector

(c) Second basis vector (d) Third basis vector

Fig. 2.2. An anisotropic diffusion problem with Dirichlet boundary conditions. The first basis
vectors (b) are nearly constant over each aggregate. The second (c) and third (d) basis vectors
vary slowly in the direction of anisotropy, and sharply in the cross direction, like the sample of
algebraically smooth error (a).

aggregate. One strategy is to use the singular vectors that correspond to singular
values that are larger than δ times the largest singular value, with 0 ≤ δ < 1. A
sharp decay of the singular values indicates that only a few singular vectors suffice to
accurately represent the sample vectors.

To illustrate this, consider two anisotropic diffusion problems on a 32 × 32 grid
using 4× 4 aggregates. The two problems have different angles of anisotropy, 0o and
45o. Figures 2.3(a) and 2.3(b) plot the first seven singular values for every aggregate
for these two problems. Each curve represents an aggregate, with the singular values
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(a) anisotropy angle = 0 (b) anisotropy angle = 45o

Fig. 2.3. First seven singular values for each aggregate (each curve represents an aggregate),
scaled such that the first singular value equals unity. The plot suggests using four and three basis
vectors for (a) and (b), respectively.

scaled such that the largest one for each aggregate is unity. For an angle of anisotropy
of 0, it is natural to use four basis vectors since there are four lines of grid points in
each aggregate, and this is reflected in the singular values. For an angle of anisotropy
of 45o, a smaller number of basis vectors for many aggregates appears adequate.

2.5. Extension to multiple levels. Once P has been defined for an operator
A, the operator at the next coarser level may be defined by Ac = PT AP . The method
can be extended to multiple levels by applying the method recursively to solve the
coarse grid correction equations involving Ac.

To apply the method to Ac, a set of algebraically smooth error vectors for Ac is
needed. These vectors may be generated from scratch, but the following procedure is
more effective.

Recall that S denotes m low-energy vectors for A. We seek T , which denotes m
low-energy vectors for Ac. If T is constructed such that

S = PT

then AcT = PT AS ≈ 0 and the vectors in T are low-energy. Assuming that P ≈ P̃ ,
then aggregate-wise we have

Si ≈ P̃iTi(2.2)

where Ti is the portion of T corresponding to aggregate i. From the SVD of Si already
computed,

Si = UiΣiV
T
i(2.3)

≈ P̃iΣki
V T

ki
(2.4)

and matching variables in (2.2) and (2.4), we have

Ti = ΣkiV
T
ki

.

Once T is formed, it generally is not smooth enough due to the approximations made
and the fact that this is a representation of a smooth vector on a coarser grid. Thus
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T must also be smoothed a few steps before it can be used. For small problems, a
small number of steps are needed, and more steps do not significantly improve the
convergence rate. For large problems, more steps can be advantageous. In our tests,
we used 2 steps.

For efficiency, it is possible to perform these smoothing steps along with the
spectral radius estimation required by the prolongation smoother (2.1) by performing
matrix-vector products with a block of vectors simultaneously.

3. Numerical Tests. In this section, we test smooth-vector interpolation in a
preconditioned multigrid method. For the multigrid method, restriction is defined
to be the transpose of interpolation, the coarse grid operator is the Galerkin coarse
grid operator, and V(1,1) cycles are used, with symmetric Gauss-Seidel smoothing.
Unstructured aggregation of the grid points used the algorithm of the smoothed ag-
gregation method [16], with a strength threshold of 0.08. For coarser levels and
non-scalar problems, the degrees of freedom corresponding to a grid point are always
aggregated together.

The test problems are discretizations of 2-D unstructured isotropic and anisotropic
diffusion equations,

auxx + buyy = f in Ω = (0, 1)2

u = 0 on ∂Ω

where a = 1 and b = 1000 for the anisotropic problems. Random right-hand sides were
used. The discretization was linear triangular finite elements. Most of the tests were
performed with the largest test problems, UNI7 and ANI7 (isotropic and anisotropic,
respectively), which have 205,761 equations and 1,436,481 nonzeros. Smaller test
problems were also used. In addition, one test with a plane strain problem was
performed and will be described later.

Conjugate gradient acceleration was used with a zero initial guess. The iterations
were stopped when the preconditioned residual norm was decreased by 8 orders of
magnitude. The experiments were run on a Linux 1.5 GHz Intel Xeon computer with
256 kbytes of cache memory and 512 Mbytes of main memory. Due to the use of
randomness in the interpolation, the iteration counts vary by a few steps from test to
test.

3.1. Test results for isotropic and anisotropic problems. Tables 3.1 and
3.2 show test results with UNI7 and ANI7, respectively. The algebraically smooth
error vectors that were used were generated by SGS relaxation, and the tables show
results for various numbers of smooth sample vectors and various numbers of smooth-
ing steps per vector. The top portion of each table shows results when a budget of
36 smoothing steps is used to generate the smooth vectors, either using fewer vectors
and more smoothing steps per vector, or vice-versa. Three basis vectors were used for
each aggregate. Five levels were used in the method, and the grid and operator com-
plexities [7] were approximately 1.4 and 3.6, respectively. Operator complexity is an
indication of the work per V-cycle of the multigrid process, relative to a matrix-vector
multiply with the fine-grid matrix.

Tables 3.1 and 3.2 show the main point of this paper: given a fixed budget of
smoothing steps, it can be worthwhile to use more vectors that are less smooth, than
to apply all the smoothing steps to a small number of vectors. When CG acceleration
is not used, the effect is much more pronounced. In any code, the improvement
depends on the portion of the preconditioner setup cost that is due to generating the
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Smooth Smoothing Iterations Time (s)
vectors steps Setup Solve Total

3 12 41 10.29 10.56 20.85
4 9 31 10.60 7.98 18.58
6 6 26 11.43 6.76 18.19
9 4 28 12.65 7.26 19.91
12 3 31 13.53 8.00 21.53
12 6 23 14.59 6.02 20.61
12 12 16 16.03 4.25 20.28
12 24 14 19.53 3.74 23.27
12 36 12 23.04 3.25 26.29

Table 3.1
Test results for UNI7.

Smooth Smoothing Iterations Time (s)
vectors steps Setup Solve Total

3 12 221 13.77 58.91 72.68
4 9 187 14.15 49.92 64.07
6 6 164 14.88 43.72 58.60
9 4 158 16.25 42.25 58.50
12 3 156 17.61 41.89 59.50
12 6 126 17.81 33.71 51.52
12 12 109 19.55 29.07 48.62
12 24 97 22.82 25.96 48.78
12 36 86 26.31 23.01 49.32
12 48 80 29.80 21.41 51.21
12 60 76 33.23 20.35 53.58
12 72 68 37.02 18.27 55.29

Table 3.2
Test results for ANI7.

smooth vectors. The disadvantage of using too many smooth vectors is the increased
cost of the SVD calculations, and this is reflected in the setup timings.

Table 3.3 shows test results for increasing problem sizes, for both the isotropic and
anisotropic problems. Again, 3 basis vectors were used for each aggregate, constructed
from 12 smooth vectors, with each smooth vector generated using 36 SGS relaxation
steps. The results show that grid-independent convergence is not present, particularly
for the anisotropic problems. It is expected that for larger problems, a larger number
of smoothing steps for the sample vectors is required to achieve a convergence rate
comparable to that for smaller problems.

Table 3.4 shows test results when a variable number of basis vectors is used for
each aggregate. These tests were performed using a MATLAB code which had this
functionality, but no timings are available. The test problem was ANI5 (see Table 3.3
for matrix information), and four levels were used in the method. We used a block of
12 sample vectors, each constructed from 3 SGS steps. The number of basis vectors
was chosen based on δ (defined in Section 2.4); the singular vectors that were used
were those corresponding to singular values larger than δ times the largest singular
value for each aggregate, but no more than 3 basis vectors were used. Table 3.4 shows
that a savings in storage can be achieved with a small impact on convergence rate, and
in some cases a savings in time may be possible due to a lower operator complexity
(δ = 0.3 case).

3.2. Using low-energy vectors from the Lanczos method. The Lanczos
method can generate approximations to the extremal eigenvalues and eigenvectors
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Equations Nonzeros Levels Iterations Time (s)
Setup Solve Total

UNI4 3321 22761 2 7 0.25 0.03 0.28
UNI5 13041 90321 3 7 1.25 0.11 1.36
UNI6 51681 359841 4 7 5.57 0.49 6.06
UNI7 205761 1436481 5 13 23.12 3.49 26.61
ANI4 3321 22761 2 13 0.24 0.05 0.29
ANI5 13041 90321 3 22 1.30 0.32 1.62
ANI6 51681 359841 4 44 6.24 2.86 9.10
ANI7 205761 1436481 5 89 25.97 23.77 49.74

Table 3.3
Test for increasing problem sizes. Grid-independent convergence is not present, particularly for

the anisotropic problems. It is expected that for larger problems, a larger number of smoothing steps
are required to achieve a convergence rate comparable to that for smaller problems.

δ Grid Operator Iterations
complexity complexity

0.0 1.40 3.03 46
0.3 1.35 2.59 49
0.4 1.31 2.28 59
0.5 1.27 1.95 75

Table 3.4
Test results for ANI5 using a variable number of basis vectors per aggregate. As the grid and

operator complexities improve by adaptively using fewer basis vectors, the iteration counts increase.

of the fine grid matrix. For SPD problems, it is natural to use the Ritz vectors
corresponding to the smallest Ritz values to construct the smooth-vector interpolation
operator. If a large number of Lanczos steps are desired, however, the method can
be costly both in terms of storage (of the Lanczos vectors) and computation (forming
the Ritz vectors).

We note also that SGS relaxation can be applied to a block of vectors, which is
computationally very efficient. Block versions of the Lanczos method, on the other
hand, generate poorer low-energy Ritz vectors, depending on the block size.

Tables 3.5 and 3.6 show test results using low-energy Ritz vectors for UNI7 and
ANI7, respectively. Three basis vectors were used for each aggregate and 5 levels were
used in the multigrid method.

The tables show budgets of either 36 or 72 matrix-vector multiplies. (A budget of
72 corresponds to 36 SGS smoothing steps, but the computational cost is greater.) A
different number of low-energy Ritz vectors were constructed. The results show that
using more Ritz vectors will improve the convergence rate, but the total time may
not be improved, due to the increased setup cost.

3.3. Plane strain problem. We briefly consider a problem that strictly requires
multiple basis vectors per aggregate, a plane strain problem on a square. The 3 rigid
body modes are known from the geometry and grid for this problem and span the
near-nullspace of the PDE operator.

The problem was discretized with 217× 217 linear quadrilateral elements (93,312
equations). The nodes were aggregated regularly, using 3 × 3 node aggregates. Ten
smooth vectors were used, with 10 SGS relaxation steps to generate each vector.
Three basis vectors were used per aggregate. The multigrid method used 4 levels.

The original problem matrix A was generated, as well as a scaled matrix, DAD,
with D = diag(10d1 , 10d2 , . . .) and the real numbers di were selected randomly from
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Matvec Smooth Iterations Time (s)
budget vectors Setup Solve Total

36 3 50 10.57 12.77 23.34
4 45 11.24 11.53 22.77
6 41 12.19 10.50 22.69
9 36 13.83 9.24 23.07
12 33 14.73 8.53 23.26

72 3 26 12.11 6.74 18.85
4 24 12.75 6.24 18.99
6 21 14.02 5.52 19.54
9 21 15.63 5.48 21.11
12 20 17.19 5.26 22.45

Table 3.5
Test results for UNI7, using low-energy Ritz vectors.

Matvec Smooth Iterations Time (s)
budget vectors Setup Solve Total

36 3 300 15.30 80.69 95.99
4 289 15.99 77.72 93.71
6 282 17.30 75.89 93.19
9 280 18.27 75.72 93.99
12 281 19.44 75.61 95.05

72 3 204 15.49 54.33 69.82
4 184 16.51 49.28 65.79
6 176 17.75 47.12 64.87
9 173 19.68 46.40 66.08
12 170 21.22 45.45 66.67

Table 3.6
Test results for ANI7, using low-energy Ritz vectors.

(0, 6).
Table 3.7 shows the results for the original problem matrix and the scaled matrix,

using both the rigid body modes to construct the interpolation operator, and the
algebraically smooth vectors. Interpolation using the rigid body modes is ideal for
the original matrix, but is entirely inappropriate for the scaled matrix. On the other
hand, by using the algebraically smooth vectors, both problems can be solved. As
expected, however, for the original matrix, the smooth-vector interpolation does not
perform as well as interpolating using the rigid body modes.

4. Concluding Remarks. The smooth-vector interpolation operator presented
in this paper is constructed to interpolate samples of algebraically smooth error.
The interpolation operator is thus matrix-dependent but particular entries in the
matrix are not needed once the aggregates have been chosen. When the budget for
generating the sample vectors is fixed, it can be beneficial to use more samples than the
number of basis vectors, even if each sample vector has more energy. This technique
is particularly advantageous when many basis vectors are required, since additional
vectors are available (from the singular value decomposition) at no additional cost.
Compared to other methods such as spectral AMGe [9], this method does not require
that the stiffness matrices for each aggregate be available. Generating the sample
vectors may also be very efficient, if blocks of vectors are relaxed simultaneously, but
this was not tested in this paper.

We note that the performance of the method cannot be better than using the
exact near-nullspace vectors if they are known and available. Another disadvantage
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Poisson Interpolation using rigid body modes Smooth-vector interpolation
ratio Original Scaled Original Scaled
.30 13 200+ 34 64
.40 18 200+ 49 97
.45 24 200+ 87 161

Table 3.7
PCG iteration counts for plane strain problem, original and scaled matrices. A maximum of

200 iterations was used.

of the method is that for larger problems, smoother sample vectors are required to
maintain the same rate of convergence. Thus it may be necessary to use a multigrid
method to help generate the sample vectors themselves, as in adaptive multilevel
methods [5, 12].

We note that it is also possible to perform the node aggregation using samples
of algebraically smooth error, instead of using matrix entries. As in [10], nodes may
be aggregated if the samples of smooth error show a strong coupling between the
nodes. Incorporating such a strategy may help develop multigrid methods that are
matrix-free.
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