NASA
Reference
Publication
1327

Lawrence
Livermore National
- Laboratory Report
UCRL-ID-113855

1993

National Aeronautics and
Space Administration
Office of Management
Scientific and Technical
Information Program
1993

Description and Use of LSODE,
the Livermore Solver for
Ordinary Differential

Equations

Krishnan Radhakrishnan
Sverdrup Technology, Inc.
Léwis Research Center Group

Alan C. Hindmarsh
Lawrence Livermore National Laboratory
Livermore, CA






Preface

This document provides a comprehensive description of LSODE, a solver for
initial value problems in ordinary differential equation systems. It is intended to
bring together numerous materials documenting various aspects of LSODE,
including technical reports on the methods used, published papers on LSODE,
usage documentation contained within the LSODE source, and unpublished notes
on algorithmic details.

The three central chapters—on methods, code descnpﬁon, and code usage—are
largely independent. Thus, for example, we intend that readers who are familiar
with the solution methods and interested in how they are implemented in LSODE
can read the Introduction and then chapter 3, Description of Code, without
reading chapter 2, Description and Implementation of Methods. Similarly, those
interested solely in how to use the code need read only the Introduction and then
chapter 4, Description of Code Usage. In this case chapter 5, Example Problem,
which illustrates code usage by means of a simple, stiff chemical kinetics problem,
supplements chapter 4 and may be of further assistance.

Although this document is intended mainly for users of LSODE, it can be used
as supplementary reading material for graduate and advanced undergraduate
courses on numerical methods. Engineers and scientists who use numerical
solution methods for ordinary differential equations may also benefit from this
document.

iii






Contents

List Of FUGUEES .. ...ttt ettt e et e L Lix
Listof Tables .......... .. ittt it iaerinanennnn xi
Chapter1 Introduction ............. ... ... .. 0iiiniiunetnnnnannn. 1
Chapter 2 Description and Implementation of Methods ............... 7
2.1 Linear MultistepMethods ........... ..., 7
2.2 Corrector IterationMethods .......... .. ...t iiiinnnnn.. 9
2.2.1 FunctionalIteration ...........c.ueeeienunrnnnnnnens.. 11

2.22 Newton-RaphsonIteration ................ccoiiuuiienn. 13

2.2.3 Jacobi-NewtonIteration ....................ciiviennn. 15

2.24 Unified Formulation ............... ... i, 15

2.3 Matrix Formulation ............. ittt 17
2.4 Nordsieck’s History Matrix ...........cccviirieunnennnnnean.. 20
2.5 Local Truncation Error Estimate and Control .................... 28
2.6 Corrector Convergence Testand Control ........................ 32
2.7 Step Size and Method Order Selection and Change ............... 33
2.8 Interpolation at OQutput Stations .............coiietuiivannenn., 36
2.9 Starting Procedure . ... ... . i i e 39
Chapter 3 Descriptionof Code .........................ciiiun.. 41
3.1 Integration and Corrector Iteration Methods ..................... 41
32 Code StUCIUIE ...\ttt ttit it n et cee et ienannnenananeens 42
3.3 Internal Commumication ..........c..oiiieareneneennnannnnn. 46
34 Special Features ......... ..ottt ieinineannannnen. 46
3.4.1 -Initial Step Size Calculation ...............coviienienn. 57

342 SwitchingMethods ...............coiiiiiiiiiiiinn.. 64

3.4.3 Excessive Accuracy Specification Test ................... 64

3.44 Calculation of Method Coefficients ..................... 65

3.4.5 NumericalJacobians ..........c...ciieiiiienrinnnennn. 66

3.4.6 Solution of Linear System of Equations .................. 69

347 JacobianMatrixUpdate ............... . ... .. il 70



Contents

3.4.8 Corrector Iteration Convergence and Corrective Actions .. ... 70
3.4.9 Local Truncation Error Test and Corrective Actions ........ 71
3.4.10 Step Size and Method Order Selection ................... 72
3.5 EIT0r MesSages - - v v v oottt e e e e e 74
Chapter 4 Description of Code Usage ................ .. ........... 75
4.1 Codelnstallation ........... ... o i 75
4.1.1 BLOCK DATA Variables ............ ... ... oLy 75
4.1.2 Modifying Subroutine XERRWYV ... ... ... ... ........ 76
4.2 Call Sequence .. ...ttt e 76
4.3 User-Supplied Subroutine for Derivatives (F) .................... 83
4.4 User-Supplied Subroutine for Analytical Jacobian (JAC) ........... 84
4.5 Detailed Usage NOteS . .. oot it ittt et i eee e e ceaeeeennnn 85
4.5.1 Normal UsageMode ............ e 86
452 UseofOtherOptions .........c.cueimninenineenn.. 86
4.53 Dimensioning Variables ............ ... .. .. ... .. .. 86
4.54 Decreasing the Number of Differential Equations (NEQ) ....87
4.5.5 Specification of Output Station (TOUT) ................. 87
4.5.6 Specification of Critical Stopping Point (TCRIT) .......... 88
4.5.7 Selection of Local Error Control Parameters
(ITOL,RTOL,and ATOL) ........... ..., 88
4.5.8 Selection of Integration and Corrector Iteration
Methods (MF) .. ... . e e 89
4.5.9 Switching Integration and Corrector Iteration Methods ... ... 91
4.6 Optional Input ... ...t e 91
4.6.1 Initial Step Size (HO) .......ciiiiiii i 92
4.6.2 Maximum Step Size (HMAX) ....... ... ... ... ... 92
4.6.3 Maximum Method Order MAXORD) ... ................ 92
4.7 Optional Qutput ... .ottt i e e e e 92
4.8 OtheTRoutines ......... ... ittt 93
4.8.1 Interpolation Routine (Subroutine INTDY) ............... 93
4.8.2 Using Restart Capability (Subroutine SRCOM) ............ 94
4.8.3 Error Message Control (Subroutines XSETF and
XSETUN) .ot e e e e e 95
4.9 Optionally Replaceable Routines . ................. ... ... ..... 95
4.9.1 Setting Error Weights (Subroutine EWSET) .............. 95
4.9.2 Vector-Norm Computation (Function VNORM) ........... 97
4.10 Overlay SitUation .. .........c.cuenieninuneenniiineenennnn 98
4.11 Troubleshooting .. ........ociiniiiit it ennanennns 98
Chapter S Example Problem ... ....... ... ... ... ... ... ... ... .. 101
5.1 Descriptionof Problem ......... ... ... ... .. . L 101
5.2 Coding Required ToUse LSODE .. ....... ... ... .. ... ...... 102
521 General ... . 102

vi



Contents

5.2.2 Selectionof Parameters .........ccieeiineiieinnnnennnns 102

53 ComputedResults ...........ccoiiiiiiiiiiiiiiiiianan, 104
Chapter 6 CodeAvailability ......... ... ... ... .. ...ciiiialt. 105
RefereneCes . ....ciiiiiitei et iineeeaorsaransasoneeennsens 107

vii






List of Figures

Figu’re 3.1—Structure of LSODE package ....-..cciuiiniinnnnnnnnnnnn 45
Figure 3.2.—Flowchart of subroutine LSODE ........................ 59
Figure 3.3.—Flowchart of subroutine STODE ........................ 61
Figure 5.1.—Listing of MAIN program for example problem ........... 103

Figure 5.2.—Listing of subroutine (FEX) that computes derivatives for
example problem ......... ... i i i i i 103

Figure 5.3.—Listing of subroutine (JEX) that computes analytical Jacobian
matrix forexampleproblem ......... ... ... . i i, 104

Figure 5.4—Output from program for example problem ............... 104

ix






List of Tables

Table 2.1.—Method coefficients for Adams-Moulton method in normal
formoforders 110 12 ... o.vv ittt it ieieeneeenneann 25

Table 2.2.—Method coefficients for backward differentiation formula
method in normal formoforders 1t06 ......ccvitiiiieniiennnnn. 26

Table 3.1.—Summary of integration methods included in LSODE

and corresponding values of METH, the first decimal digitof MF ... .... 42
Table 3.2.—Corrector iteration techniques available in LSODE and

corresponding values of MITER, the second decimal digitof MF ....... 42
Table 3.3.—Description of subprograms usedin LSODE ................ 44

Table 3.4.—Routines with common blocks, subprograms, and calling
subprograms in double-precision version of LSODE .................. 47

Table 3.5.—Routines with common blocks, subprograms, and calling
subprograms in single-precision version of LSODE .................. 48

Table 3.6.—Common blocks with variables and subprograms where used . . .49

Table 3.7.—Description of variables in common block EH0001, their
current values, and subprograms where they areset ................... 49

Table 3.8.—Description of variables in common block LS0001, their
current values, if any, and subprograms where they are set

o) e 101 o)1=« A 50
Table 3.9 —Length LENWM of array WM in table 3.8 for iteration

techniques includedincode ............. .. i, 55
Table 4.1.—Values of ITASK used in LSODE and their meanings ......... 77
Table 4.2.—Values of ITOL used in LSODE and their meanings .......... 78

Table 4.3.—Values of ISTATE that can be used on input to LSODE
and theirmeanings ...........c.ccueuiiniirioineiininenennnnenennns 79

Table 4.4.—Values of ISTATE returned by LSODE and their meanings ....79

xi



List of Tables

Table 4.5.—Values of TOPT that can be used on input to LSODE
and thelr Meanings .. ... ... ..ot uneten et eieananann. 80

Table 4.6.—Optional input parameters that can be set by user and their
locations, meanings, and default values ............................ 80

Table 4.7.—Optional output parameters returned by LSODE and their
locations and meanings .. ...... ...ttt i e 82

Table 4.8.—Useful informational quantities regarding integration that
can be obtained from array RWORK and their names and locations ... ... 82

Table 4.9 —Minimum length required by real work array RWORK (i.e.,
minimum LRW) foreachMF .. ... ... .. ... . i 83

Table 4.10.—Minimum length required by integer work array IWORK
(i.e., minimum LIW) foreach MITER ............................. 83

xii



Chapter 1
Introduction

This report describes a FORTRAN subroutine package, LSODE, the Livermore
Solver for Ordinary Differential Equations, written by Hindmarsh (refs. 1 and 2),
and the methods included therein for the numerical solution of the initial value
problem for a system of first-order ordinary differential equations (ODE’s). Such
a problem can be written as

dy

1]

Y.

y

= f(v®.€)

1.
_y_(&o) =Y, = Given,

where Y, ¥, Z, and f are column vectors with N (2 1) components and & is the

independent variable, for example, time or distance. In component form equa-
tion (1.1) may be written as

N

dyl(é) = .f}(yl(é),...,yN(g),é)

3

> i =1,....,N. 12)
yi(§0) = ;0 = Given

The initial value problem is to find the solution function y at one or more values
of & in a prescribed integration interval [£o,8enal, Where the initial value of ¥, ¥,
at § = & is given. The endpoint, &4, may not be known in advance as, for
example, when asymptotic values of y as & — oo are required.

Initial value, first-order ODE’s arise in many fields, such as chemical kinetics,
biology, electric network analysis, and control theory. It is assumed that the



1. Introduction

problem is well posed and possesses a solution that is unique in the interval of
interest. Solution existence and uniqueness are guaranteed if, in the region of
interest, f is defined and continuous and for any two vectors y and y* in that
region there exists a positive constant & such that (refs. 3 and 4) B

lire) - =) = 2y - v

|, (1.3)

which is known as a Lipschitz condition. Here [|+|| denotes a vector norm (e.g.,
ref. 5), and the constant & is known as a Lipschitz constant of f with respect to y.

The right-hand side f of the ODE system must be a function of y and & only. Tt
cannot therefore involve y at previous & values, as in delay or retarded ODE’s or
integrodifferential equations. It cannot also involve random variables, as in
stochastic differential equations. A second- or higher-order ODE system must be
reduced to a first-order ODE system.

The solution methods included in LSODE replace the ODE’s with difference
equations and then solve them step by step. Starting with the initial conditions at
&0, approximations Y, (= Y;,, i = 1,...,N) to the exact solution y(&,) [= y,(&n),
i = 1,...,N] of the ODE’s are generated at the discrete mesh points &, (n = 1,2,...),
which are themselves determined by the package. The spacing between any two
mesh points is called the step size or step length and is denoted by A, where

hy = & — &t (1.4)

An important feature of LSODE is its capability of solving “stiff” ODE problems.
For reasons discussed by Shampine (ref. 6) stiffness does not have a simple
definition involving only the mathematical problem, equation (1.1). However,
Shampine and Gear (ref. 7) discuss some fundamental issues related to stiffness
and how it arises. An approximate description of a stiff ODE system is that it
contains both very rapidly and very slowly decaying terms. Also, a characteristic
of such a system is that the NxN Jacobian matrix J (= df/dy), with element Jy
defined as

J; = 3y, ij = 1..,N, (1.5)

has eigenvalues {A;} with real parts that are predominantly negative and also vary
widely in magnitude. Now the solution varies locally as a linear combination of
the exponentials {eéReO‘l)}, which all decay if all Re(A; ) < 0, where Re(A;) is the
real part of A,. Hence for sufficiently large & (> 1/max[Re();)|, where the bars o
denote absolute value), the terms with the largest Re(A,) will have decayed to
insignificantly small levels while others are still active, and the problem would be
classified as stiff. If, on the other hand, the integration interval is limited to
I/max[Re(?\.i) , the problem would not be considered stiff.




1. Introduction

In this discussion we have assumed that all eigenvalues have negative real
parts. Some of the Re(A;) may be nonnegative, so that some solution components
are nondecaying. However, the problem is still considered stiff if no eigenvalue
has a real part that is both positive and large in magnitude and at least one
eigenvalue has a real part that is both negative and large in magnitude (ref. 7).
Because the {A;} are, in general, not constant, the property of stiffness is local in
that a problem may be stiff in some intervals and not in others. Itis also relative in
the sense that one problem may be more stiff than another. A quantitative
measure of stiffness is usually given by the stiffness ratio max[-Re(A;))/min
[-Re(A;)]. This measure is also local for the reason given previously. Another
standard measure for stiffness is the quantity max[-Re(A)][€ena — &o| This
measure is more relevant than the previous one when [Ecng — Eq| is a better
indicator of the average “resolution scale” for the problem than 1/min[—Re(A;)].
(In some cases min[-Re(A;)] =0.)

The difficulty with stiff problems is the prohibitive amounts of computer time
required for their solution by classical ODE solution methods, such as the popular
explicit Runge-Kutta and Adams methods. The reason is the excessively small
step sizes that these methods must use to satisfy stability requirements. Because
of the approximate nature of the solutions generated by numerical integration
methods, errors are inevitably introduced at every step. For a numerical method
to be stable, errors introduced at any one step should not grow unbounded as the
calculation proceeds. To maintain numerical stability, classical ODE solution
methods must use small step sizes of order 1/max[—Re()A;)] even after the rapidly
decaying components have decreased to negligible levels. Examples of the step
size pattern used by an explicit Runge-Kutta method in solving stiff ODE problems
arising in combustion chemistry are given in references 8 and 9. Now, the size of
the integration interval for the evolution of the slowly varying components is of
order 1/min[-Re(A;)]. Consequently, the number of steps required by classical
methods to solve the problem is of order max[—Re(A;)}/min[—Re(A;)], which is
very large for stiff ODE’s.

For stiff problems the LSODE package uses the backward differentiation
formula (BDF) method (e.g., ref. 10), which is among the most popular currently
used for such problems (ref. 11). The BDF method possesses the property of stiff
stability (ref. 10) and therefore does not suffer from the stability step size constraint
once the rapid components have decayed to negligible levels. Throughout the
integration the step size is limited only by accuracy requirements imposed on the
numerical solution. Accuracy of a numerical method refers to the magnitude of
the error introduced in a single step or, more precisely, the local truncation or
discretization error. The local truncation error d, at &, is the difference between
the computed approximation and the exact solution, with both starting the
integration at the previous mesh point &,..; and using the exact solution y(&,—1)
as the initial value. The local truncation error on any step is therefore the error
incurred on that step under the assumption of no past errors (e.g., ref. 12).

The accuracy of a numerical method is usually measured by its order. A
method is said to be of order q if the local truncation error varies as h,‘{*l. More

3



1. Introduction

precisely, a numerical method is of order g if there are quantities C and 4, (> 0)
such that (refs. 3 and 13)

ld,| < crgt for all 0 <h, <h, (1.6)

where |d,| is an N-dimensional column vector containing the absolute values of
the d;, (i = 1,...,.N). The coefficient vector C may depend on the function defining
the ODE and the total integration interval, but it should be independent of the step
size h, (ref. 13). Accuracy of a numerical method refers to the smallness of the
error introduced in a single step; stability refers to whether or not this error grows
in subsequent steps (ref. 7).

To satisfy accuracy requirements, the BDF method may have to use small step
sizes of order 1/max(Re [A,]) in regions where the most rapid exponentials are
active. However, outside these regions, which are usually small relative to the
total integration interval, larger step sizes may be used.

The LSODE package also includes the implicit Adams method (e.g., refs. 4 and
10), which is well suited for nonstiff problems. Both integration methods belong
to the family of linear multistep methods. As implemented in LSODE these
methods allow both the step size and the method order to vary (from 1 to 12 for
the Adams method and from 1 to 5 for the BDF method) throughout the problem.
The capability of dynamically varying the step size and the method order is very
important to the efficient use of linear multistep methods (ref. 14).

The LSODE package consists of 21 subprograms and a BLOCK DATA module.
The package has been designed to be used as a single unit, and in normal
circumstances the user needs to communicate with only a single subprogram, also
called LSODE for convenience. LSODE is based on, and in many ways resembles,
the package GEAR (ref. 15), which, in turn, is based on the code DIFSUB, written
by Gear (refs. 10 and 16). All three codes use integration methods that are based
on a constant step size but are implemented in a manner that allows for the step
size to be dynamically varied throughout the problem. There are, however, many
differences between GEAR and LSODE, with the following important
improvements in LSODE over GEAR: (1) its user interface is much more
flexible; (2) it is more extensively modularized; and (3) it uses dynamic storage
allocation, different linear algebra modules, and a wider range of error types (ref.
17). Most significantly, LSODE has been designed to virtually eliminate the need
for user adjustments or modifications to the package before it can be used
effectively. For example, the use of dynamic storage allocation means that the
required total storage is specified once in the user-supplied subprogram that
communicates with LSODE; there is no need to adjust any dimension declarations
in the package. This feature, besides making the code easy to use, minimizes the
total storage requirements; only the storage required for the use:’s problem needs
to be allocated and not that called for by a code using default values for parameters,
such as the total number of ODE’s, for example. The many different capabilities
of the code can be exploited quite simply by setting values for appropriate



1. Introduction

parameters in the user’s subprogram. Not requiring any adjustments to the code
eliminates the user’s need to become familiar with the inner workings of the code,
which can therefore be used as a “black box,” and, more importantly, eliminates
the possibility of errors being introduced into the modified version.

The remainder of this report is organized as follows: In chapter 2 we describe
the numerical integration methods used in LSODE and how they are implemented
in practice. The material presented in this chapter is based on, and closely
follows, the developments by Gear (refs. 10 and 18 to 20) and Hindmarsh (refs. 1,
2, 15, 21, and 22). Chapter 3 describes the features and layout of the LSODE
package. In chapter 4 we provide a detailed guide to its usage, including possible
user modifications. The use of the code is illustrated by means of a simple test
problem in chapter 5. We conclude this report with a brief discussion on code
availability in chapter 6.






Chapter 2
Description and Implementa-

tion of Methods

2.1 Linear Multistep Methods

The numerical methods included in the packaged code LSODE generate
approximate solutions Y, to the ordinary differential equations (ODE’s) at discrete
points &, (n = 1,2,...). Assuming that the approximate solutions Y, have been
computed at the mesh points ﬁ,,_j (j = 1,2,...), these methods advance the solution
to the current value &, of the independent variable by using linear multistep
- formulas of the type

Kl K?.
Y, =D 0, j+h, D L, s @1)
j=1 j=0

where the current approximate solution vector Y, consists of N components,

Y, = (I,/l,n,...,YMn)T, 22)

and the superscript T indicates transpose. In equation (2.1), f,—; [= f(¥,_)] is the
approximation to the exact derivative vector at &,,_;, Z (§,,_j) [=£( y (E_,,,_j))], where
for notational convenience the & argument of f has been dropped; the coefficients
{0y} and {B;} and the integers K] and K are associated with a particular method;
and h, (=&, — &,) is the step size to be attempted on the current step [§,_1,E,]-
The method is called linear because the {Y;} and {f;} occur linearly. It is called
multistep because it uses information from several previous mesh points. The
number max (K3, K3) gives the number of previous values involved.

The values K1 = 1 and K3 = g — 1 produce the popular implicit Adams, or
Adams-Moulton (AM), method of order g:



2. Description and Implementation of Methods

g-1
Y, =Y, +h, > Bif, 23)
=0

The method is called implicit because it uses the as yet unknown £, to compute
Y,. The method order ¢ means that if equation (2.3) is solved with all past values
being exact, the resulting Y, will differ from the exact solution y(&,) to the ODE
system by a local truncation error that is of order O(Hq+1) for small values of H =
max|fy.

The choice K| = g, K3 = 0 results in the backward differentiation formula
(BDF) method of order g:

q
Y, =D 0¥, j+hBof,. 24)
J=1

The term “backward differentiation formula™ is used to describe the method
because equation (2.4), upon division by 4, and rearrangement of terms, can be
regarded as an approximation for y(&,) in terms of Y,,, Y, 15es Yy g (refs. 15
and 17).

The two methods can be written in the general form

X" = En + hnBOEn = EII + hnBOi(Xn)v (2.5)

where ¥  contains previously computed information and is given by

gq-1
v =Y, + hnz Bif, (2.6a)
j=1
for the AM method of order g, and
q
v, =YY, 2.6b)
j=1

for the BDF method of order q.

The coefficients {0y} and {B;} are determined such that equations (2.3) and
(2.4) will be exact if the solution to equation (1.1) is a polynomial of degree g or
less. Stability characteristics limit g in equation (2.4) to 6 (ref. 10). In LSODE,
however, BDF’s of order up to only 5 are used because of additional stability
considerations (refs. 7 and 23). The coefficients {05} and {(;} for the two



2.2 Corrector Iteration Methods
methods are given by Gear (ref. 10) for g < 6. In equation (2.5), although the
subscript  has been attached to the step size 4, indicating that A, is the step size to
be attempted on the current step, the methods used in LSODE are based on a
constant . When the step size is changed, the data at the new spacing required to
continue the integration are obtained by interpolating from the data at the original
spacing. Solution methods and codes that are based on variable step size have
also been developed (refs. 17, 23, and 24) but are not considered in the present
work.

2.2 Corrector Iteration Methods

If B = 0, the methods are called explicit because they involve only the known
values {Y,} and {f,}, and equation (2.1) is easy to solve. If, however,
Bo #0, the methods are called implicit and, in general, solution of equation (2.1) is
expensive. For both methods, equations (2.3) and (2.4), B is positive for each g
and because { is, in general, nonlinear, some type of iterative procedure is needed
to solve equation (2.5). Nevertheless, implicit methods are preferred because they
are more stable, and hence can use much larger step sizes, than explicit methods
and are also more accurate for the same order and step size (refs. 4, 10, and 12).
Explicit methods are used as predictors, which generate an initial guess for Y,,.
The implicit method corrects the initial guess iteratively and provides a reasonable
approximation to the solution of equation (2.5).

The predictor-corrector process for advancing the numerical solution to &,
therefore consists of first generating a predicted value, denoted by Y%, and then
correcting this initial estimate by iterating equation (2.5) to convergence. That is,
starting with the initial guess X,[P], approximations X,[,"‘] (m = 12,..,M) are
generated (by using one of the techniques discussed below) until the magnitude of
the difference in two successive approximations approaches zero within a specified
accuracy. The quantity X,[{"] is the approximation obtained on the mth iteration,
the integer M is the number of iterations required for convergence, and we accept
X,[,M] as an approximation to the exact solution y at &, and therefore denote it by
Y., although, in general, it does not satisfy equation (2.5) exactly.

At each iteration m the quantity h,,_'if;{"], which is defined here, is computed

from Y™ by the relation
Y™ =y o+ ok, ¥ @.7)
Now, as discussed by Hindmarsh (ref. 21) and shown later in this section, if X,[,’"]

. . . . [m] .
converges as m — oo, the limit, that is, lim Y, must be a solution of
m—yoo

equation (2.5) and Yim) converges to f, [= f(Y,»)], the approximation to Z(én)



2. Description and Implementation of Methods

Hence p_ Y["’] is the mth estimate for h,f, and lim Y[m] = h,f,. The predicted

m—3eo

value of a,f,, denoted by h, XE: 1 is also obtained from equation (2.7) (by setting

m =0). In practice, we terminate the calculation sequence at a finite number M of
iterations and accept as an approximation to k,f, the quantity A, Xn = hnXEIM],
which is obtained from X,[,M] by using equation (2.7). Note that Xn is only an
approximation to f, because _Y_,£M] does not, in general, satisfy equation (2.5)
exactly (see egs. (2.5) and (2.7)). Moreover, because YI[M] is defined to satisfy
the solution method, in the sense of equation (2.7), it is not necessarily equal to
f(XLM]). Therefore XLM] and X%M ! do not necessarily satisfy the ODE, equa-
tion (1.1). Thus, in practice, to advance the solution, the methods use the {_Y_ ] }e.g.,
see egs. (2.8a) and (2.8Db)), rather than the {f;} as wriiten in equation (2.1).

After convergence of the estimates Y™, we could define ¥{M] to be equal to
£, so that Y and YIM] satisfy the ODE exactly. However, besides being
more expensive because it will require one derivative evaluation, performing this
operation is actually less stable for stiff equations than using equation (2.7)
(ref. 25).

The predicted value at &, X,I,O], is generated by a gth-order explicit formula
similar to equations (2.3) and (2.4) (refs. 18 and 20):

q
[0 *g
Yo = Yo +h DB, (238a)
for the AM method of order g and

¥y - Za Y.+ By, (2.8b)

for the BDF method of order g. In these two equations Y Y jisthe approxunatlon
to f,_;j computed on the step [§,-j-1.8,—]. The coefﬁments {ocj} and {B J} are
selected such that equation (2.8a) or (2.8b) will be exact if the solution to
equation (1.1) is a polynomial of degree g or less.

The predictor step for the two methods can be generalized trivially as

0
VORI 2.9)

—n

where y* is given by the right-hand sides of equations (2.8a) and (2.8b),
respectlve'fy, for the AM and BDF methods.

10



2.2, Corrector Iteration Methods
To correct the initial estimate given by equation (2.9), that is, to solve

equation (2.5), LSODE includes a variety of iteration techniques—functional,
Newton-Raphson, and a variant of Jacobi-Newton.
2.2.1 Functional Iteration

To derive the functional iteration technique, also called simple iteration

(refs. 11 and 26) and successive substitution (ref. 27), we rewrite equation (2.5) as
follows:

Y, = &Y,) (2.10)
where
o(Y,) = v, + hBof(Y,) @11)

The (m + 1)th estimate, Y™ (m = 0,1,..,M—1), is then obtained from
equation (2.10) by (e.g., ref. 27)

= Q(X,E”’]) v+ h,,Boi(X,E””). 212)

Now equation (2.7) gives the following expression for &, ZE,mH] :
+1 o [m+1
Y™ =y o+ B, X 2.13)
Comparing equations (2.12) and (2.13) gives
s [m+1] [m]
L™ = he(x) @14)

for functional iteration.
We now defin€ the vector function g(y) by

v -y
gy) = h f(y) + =2—, (2.15)
Bo

which, upon using equation (2.7), gives

11



2. Description and Implementation of Methods

g(Y) = m,f(x[m) — n, Y0, (2.16)

By using equation (2.15) we can rewrite the functional iteration equation (2.12) as
follows:

+1
ylmtl ooyl Bog(zf[”]). @.17)

Finally the combination of equations (2.14) and (2.16) produces the following

functional iteration procedure for /4, Y n'

—n

., [m+1] ., [m] [m]
nY, =hY," + g(Y ) (2.18)

Equation (2.17) is simple to use, but it converges only linearly (ref. 27). In
addition, for successful convergence the step size may be restricted to very small
values for stiff problems (refs. 4, 10, 12, 26, and 28), as shown here. By using
equation (2.14) we can rewrite equation (2.16) as

g(X,E”’]) = h,,f(z,ﬁ’"]) - hnf[z,E"‘“]), 2.19)

for m > 1. Hence, equation (2.17) can be rewritten as

ooyl h,,BO[f(X,[,m]) - f(zn["“”ﬂ. (2.20)

By using the Lipschitz condition, equation (1.3), we get the following relation
from equation (2.20):

v [m+1]

(] [m] [m-1]
X, -Y, Y, -Y, , 221

< |r,[Bo<

which shows that the iteration converges, that is, the successive differences

XElm+1] _ XElm]




2.2. Corrector Iteration Methods

decrease, only if

I, Bog < 1. 222)

Now stiff problems are characterized by, and often referred to as systems with,
large Lipschitz constants (e.g., refs. 4, 12, and 26), and so equation (2.22) restricts
the step size to very small values. Indeed, the restriction imposed by this
inequality on h,, is exactly of the same form as that imposed by stability requirements
on classical methods, such as the explicit Runge-Kutta method (refs. 4 and 26).
For this reason, when functional iteration is used, the integration method is
usually said to be explicit even though it is implicit (ref. 17).

2.2.2 Newton-Raphson Iteration

Newton-Raphson (NR) iteration, on the other hand, converges quadratically
and can use much larger step sizes than functional iteration (refs. 27, 29, and 30).
Rapid improvement in the accuracy of the estimates is especially important
because the corrector is iterated to convergence. The reason for iterating to
convergence is to preserve the stability characteristics of the corrector. If the
correction process is terminated after a fixed number of iterations, the stability
characteristics of the corrector are lost (refs. 4 and 12), with disastrous consequences
for stiff problems.

To derive the NR iteration procedure, we rewrite equation (2.5) as

RY,) =Y, - v, - KBf(Y,) = 0, 223)

so that solving equation (2.5) is equivalent to finding the zero of R. The quantity
R(I,[{”]) is the residual vector on the mth iteration; that is, it is the amount by
which X,[,'”] fails to satisfy equation (2.5). To obtain the (m + 1)th estimate, we
expand equation (2.23) in a Taylor series about the mth estimate, neglect the
second and higher derivatives, and set ROYL™1}) = 0 because we seek a Y1
that produces this result (e.g., ref. 27). Performing these operations and then
rearranging terms give the following relation for the NR iteration technique:

[m+1] [m] [m] [m] [m]
P(Xnm - Xnm ) = —B(Xnm) = In + hnBOf(Xnm) - Xnm '

2249
where the NN matrix P is given by
P=0RAY =1 -k B,J. (225

13



2. Description and Implementation of Methods

In equation (2.25), I is the NxA identity matrix and J is the Jacobian matrix,
equation (1.5). Comparing equations (2.15) and (2.23) shows that

R(Y) = —Boe(, (226)

so that equation (2.24) can be rewritten as follows:
™ = i+ poptg(x (™). @27

The NR iteration procedure for h, Xn is derived by subtracting equation (2.7)
from equation (2.13) and then using equation (2.27). The result is

o [m+1] o [m] -1 [m}l
B SRS Fi g(zn ) 2.28)

This iteration will converge provided that the predicted value is sufficiently
accurate (refs. 4 and 12). The prediction method, equation (2.9), provides a
sufficiently accurate initial estimate that the average number of iterations per step
is less than 1.5 (ref. 7). In fact, the predictor is generally as accurate as the
corrector, which is nonetheless needed for numerical stability. However, much
computational work is required to form the Jacobian matrix and to perform the
linear algebra necessary to solve equation (2.27). Now, because the Jacobian does
not appear explicitly in the ODE’s, equation (1.1), or in the solution method,
equation (2.5), J need not be very accurate. Therefore, for problems in which the
analytical Jacobian matrix is difficult or impossible to evaluate, a fairly crude
approximation such as the finite-difference quotient

Jy = A + AAYQ _ f"(Yj), ij=1,..N, (2.29)

is adequate. In equation (2.29), AY; is a suitable increment for the jth component
of Y.

Inaccuracies in the iteration matrix may affect the rate of convergence of the
solution but not the solution if it converges (refs. 4 and 21). Hence this matrix
need only be accurate enough for the iteration to converge. This beneficial fact
can be used to reduce the computational work associated with linear algebra, as
described in chapter 3.

14



2.2. Corrector Iteration Methods
2.2.3 Jacobi-Newton Iteration

Jacobi-Newton (JN) iteration (ref. 31), also called Jacobi iteration (ref. 32), is
obtained from Newton-Raphson iteration by neglecting all off-diagonal elements
of the Jacobian matrix. Hence for JN iteration

J. = 0. i#J 2.30
¥ \ofky;, i= 230

This technique is as simple to use as functional iteration because it does not
require any matrix algebra. Also, it converges faster than functional iteration but,
in general, not as fast as NR iteration.

A method closely resembling JN iteration is implemented as a separate method
option in LSODE. It is like JN iteration in that it uses a diagonal approximation D
to the Jacobian matrix. However, the diagonal elements Dj; are, in general,
different from J; and are given by the difference quotient

p. o HE+ AD - £O)

i=1,.,N, 231
4 A}}

where the increment vector AY = 0.1 g (Y0, If J is actually a diagonal matrix,

Dj=Jy+ O(AY,Z), but, in general, D;; effectively lumps together the various
elements {J;;} in row i of J.

2.2.4 Unified Formulation

The different iteration methods can be generalized by the recursive relations

™ =y 4 gty @32
and
By o ylml P_lg(X,[,m]), (233)

where P depends on the iteration method. For functional iteration P =1, and for
NR and JN iterations P is given by equation (2.25), where J is the appropriate
Jacobian matrix, equation (1.5), (2.30), or (2.31).

15



2. Description and Implementation of Methods
The combination of equations (2.32) and (2.33) gives

. 1 hd
R L LAt (L) Y

which shows that if S_(,E"’] converges as m — oo, so does XE”’]. Equation (2.32)
shows that if X,[,"’] converges (to Y,;)) as m — oo, g(‘&_(,g"‘]) —> 0, and therefore we
see from equations (2.15) and (2.16), respectively, (1) that the converged solution
satisfies equation (2.5) and (2) that YI™ — f(y,) = f,.

The predictor-corrector methods can be summarized as follows:

Predictor:
[0]
Y, v
S (235
{01
. Y -y
[0] =n n
h Y =
n n BO
Corrector:

N

g(z,ﬁ'”]) - hnf(zi””) ~ ¥

X£m+1] = X,[Im] + BoP"lg(X,[,m]) m=0,1,...,M~1

T G N P“g(zf,”‘])

(2.36)
Y, = Y
237
hnin = hnX,[lM]-

16



2.3 Matrix Formulation

2.3 Matrix Formulation

The implementation of linear multistep methods is aided by a matrix formulation
(ref. 21). This formulation, constructed by Gear (ref. 18), is summarized here.

To solve for Y, and h, Y by using equations (2.35) to (2.37), we need, and
therefore must have saved, the L=¢ + 1 column vectors Y,,;, & Yn_l,h Yn_z, s
and & Y,,_q for the AM method of order g, or Y,-1, Yn-2,---s Yn—g, and A Yn_l

for the BDF method of order q. Hence for the AM method of order g we define
the NxL history matrix w,. at &,1 by

Wp-1 = (X,,_phnX,,_l, han_z,--.,h,,Xn_q), (2.38a)
that is,
g . . . \
Yl,n-l hnl',l,n—l hn}.’l,n—Z R hn?l,n—q
Y2,n-—1 hnY2,n-—1 hnYZ,n—Z DER hnYZ,n-—q
W, = ) ’ ) ) L (2.39)
\YN,n—l hnYN,n—l hn?N.n—Z cee hnf,N,n—Q)
The updated matrix
= (Yoo 1n Xy B X g (2.40a)

is then constructed at each step &,,. The predicted matrix w,[,O] at &, is given by
[0] :
wid = ( YO, Y 1 X s X +1). (2.41a)

For the BDF method of order g these matrices take the form

(Yot X, Y20 Y g b (2.38b)

Wno1

(Y n Yo Xt s gt b (2.40b)

€
£
[

17



2. Description and Implementation of Methods
and

- [0
W%O] = (XglolrhrlXEl]’Xn—l""’Xn—q+l)' (241b)

The matrix formulations for w,[lol and w,, are derived as follows: Substituting

the expression for X,[,O], equation (2.8a) or (2.8b), into that for hnXE?], equa-
tion (2.35), and then using equation (2.6a) or (2.6b) give
<[ BB, B,
01 _ j Fi g q Y
h,Y, —Z h Y, ; + B, hY, . (242a)
j=1 0
for the AM method of order g and
0% B, <
hnXy =~ 5 L X, + B—‘h,,zn_l (2.42b)
j=1 0 0

for the BDF method of order g. Equations (2.8a) and (2.42a), or (2.8b) and
(2.42b), that is, the prediction process, can be rewritten as the matrix equation

wil=w B, (243)

where the LxL matrix B depends on the solution method. For the AM method of
order g, it is given by

1 0 0 0 00
B BIB_OBI 10 00
+ B, - B
B> 2502 0 1 00
B =| : :: C (244a)
) 1
* B;_I_B_l
Byt BO" 00 0 1
. B
B, By 0 0 00

18



2.3 Matrix Formulation
and for the BDF method of order g,

[ \
» al - (11
o B 100 . 0
B*
B B-;— 000 0
* a; - (12
oy B 010 . 0
o — o
* 3 3
o B 0 0 1 0
B=| . ) . |. (c44p)
1
(Z* -
a; = —21 000 1
Bo
(1* - O
a; g 4 00 0 0
. Bo )

The corrector equation, equation (2.36), can be expressed in matrix form as

[m+1] _

wlml _ylm | pt g(x,[,”‘]) b, (245)

where w,l['"], the history matrix on the mth iteration, is given by

w'[lm] = (X'[lm], hn-Y—rEm]’ hnin—l’ '"’hnin—q+1 ) (2’463)
for the AM method and by

19



2. Description and Implementation of Methods

W'Em] — (X,[lm]’ hﬂX,Em]y Xn-—l’ ,..,X n—q+1 ) (2.46b)

for the BDF method, k is the L-dimensional vector

k=(B,,1,0,...,0), (247)

and P depends on the iteration technique, as described in section 2.2.4.
The matrix formulation of the methods can be summarized as follows:

Predictor:

9= w B (248)

[
W n

Corrector:

(X ) =y tx0) -, 20

m=0,1,..,M~1.  (249)
W) 2l ety )
w, =wMl (2:50)

2.4 Nordsieck’s History Matrix

Instead of saving information in the form w,_;, equation (2.38a) or (2.38b),
Gear (ref. 18) suggested making a linear transformation and storing the matrix
z,_1 given by

z,_; =w, ,Q, (2.51)

where the LXL transformation matrix Q is nonsingular. In particular, Q is chosen
such that the matrix representation suggested by Nordsieck (ref. 33) is obtained:

2 q
hyy by Y(q)

Z,1 = Xn l’h Yn 157 91 Xn—l’ > (2'52)

20



2.4 Nordsieck's History Matrix
that is, the NxL matrix z,_j is given by

p

q
% @
Yl,n—l hnYl,n—l h" Y Lncl
q
' )
Y2,n—1 hnY:'Z,n—l - e e e _};"_'-)é"ln_l
-1 = . (2.53)
Y q
KYN,n—I hnYN,n—-l e e e e ... };n' Y(qn—l

In equation (2. 53),Y(§ n—1 is the jth denvatlve of the approximating polynomial for
Y; 1. Because scaled derivatives h’X_ _1/j! are used, Q is independent of the
step size. However, Q depends on the solution method. The N rows of z,,; are
numbered from 1 to N, so that the ith row (i = 1,...,N) contains the ¢ + 1 scaled
derivatives of the ith component, Y;, 1, of Y,—;. The g + 1 columns are, however,
numbered from 0 to g, so that the column number corresponds to the order of the
scaled derivative stored in that column. Thus the jth column (G =0,1,...,q), which
we denote by the vector z,-1(j), contains the vector h,,I —1/f!. The Nordsieck
matrix formulation of the method is referred to as the “normal form of the
method” (ref. 10).

Applying the appropriate transformation matrix Q to the predictor equation,
equation (2.48), gives

0 0 -
z,[;] = w,[,] = w,1BQ =z, ;Q7'BQ = Zp A, (254)
where
2 q @
20 (Y[O] v '501, hy Y[O] oty } (2.55)
q'

is the predicted NXL Nordsieck history matrix at &, and

21



2. Description and Implementation of Methods

A = QBQ. (2.56)

The LXL prediction matrix A provides a gth-order approximation to z,£°1 in terms
of z,_; and is therefore the lower-triangular Pascal triangle matrix (ref. 10), with
element A; given by

Al] = (_) i:.] = 0919---9qs (2‘57)
i i j

where (;) is the binomial coefficient, defined as

i il
= e (2.58)
J Jra—=j
Hence
1 0 0 0 0 0 0
1 1 0 0
1 2 1
1 3 3 1 )
A=
(2.59)
1 g=2)q-3 (g-2)g-3)g-4)
q-2 1
21 3
1 a-1 g-1(g-2) (g-Dg-2X¢=3 (g-1) 1
21 31
1 4 qg-1) 9(g—11g-2) o q(g—1) 1
2 31 2

The principal advantage of using the Nordsieck history matrix is that the matrix
multiplication implied by equation (2.54) can be carried out solely by repeated
additions, as shown by Gear (ref. 10). Hence computer multiplications are

22



2.4 Nordsieck's History Matrix

avoided, resulting in considerable savings of computational effort for large
problems. Also A need not be stored and z[% overwrites 2,_j, thereby reducing

memory requirements.
i+1) _f & i
() = )+ () a5

Because
and A;; = A;p = 1 for all i, the product zA is computed as follows (refs. 10 and 15):

For k=0,1,....,q—-1, do:

For j=¢q,9-1,....k+1, do:
{ I=%4 2.61)

4¢3zt i=1,...,N.

25 J TR -1
In this equation the subscripts n and n—1 have been dropped because the z values
do not indicate any one value of & but represent a continuous replacement process.
At the start of the calculation procedure given by equation (2.61), z =z,_;; and at
the end z = z,EO]. The arrow “«” denotes the replacement operator, which means
overwriting the contents of a computer storage location. For example,

Zi3 €24 +2i3
means that z; 4 is added to z; 3 and the result replaces the contents of the location
z;3. The total number of additions required in equation (2.61) is Ng(g + 1)/2. The
predictor step is a Taylor series expansion about the previous point &,_; and is
independent of both the integration method and the ODE.
Another important advantage of using Nordsieck’s formulation is that it makes

changing step size easy. For example, if at &, the step size is changed from h,, to
rh,, the new history matrix is obtained from

z, <z,C, (2.62)

where the LXL diagonal matrix C is given by

(1 0\

C= . . (2.63)

23



2. Description and Implementation of Methods

The rescaling can be done by multiplications alone, as follows:

R=1
For j=1,...,q, do:
R« R 2.64)
;< R i=1,...N. ‘
The corrector equation corresponding to equation (2.49) is given by
<470l Qi QP g(x{) o of +27 (e,
(2.65)
where z,[,'"], the Nordsieck history matrix on the mth iteration, is given by
) e s B )@
zlml = ylml p yiml, N yim, 7”' Ll (2.66)
and
1=kQ (2.67)
is an L-dimensional vector
0=(05, 0,2} (2.68)

For the two solution methods used in LSODE the values of { are derived in
references 21 and 22 and reproduced in tables 2.1 and 2.2. Methods expressed in
the form of equations (2.54) and (2.65) are better described as multivalue or L-
value methods than multistep methods (ref. 10) because it is the number L of
values saved from step to step that is significant and not the number of steps
involved.

The two matrix formulations described here are related by the transformation
equations (2.51), (2.54), and (2.65) and are therefore said to be equivalent
(ref. 10). The equivalence means that if the step [€,_1,E,] is taken by the two
methods with equivalent past values w,_; and z,_i, that is, related by equa-
tion (2.51) through Q, then the resulting solutions w,, and z, will also be related
by equation (2.51) through Q, apart from roundoff errors (ref. 21). The
transformation does not affect the stability properties or the accuracy of the

24



sT

TABLE 2.1.—METHOD COEFFICIENTS FOR ADAMS-MOULTON METHOD IN NORMAL FORM OF ORDERS 1 TO 12

p—

(28]

~ ool
wn
—

~d
Ol

26842253
95800320

4771223
17418240

) 23 o L5 b Y 2 o Y10 ¥
1

)

3 1 /

5 §

n 1 )

12 3 7

28 35 S A

24 72 48 120

37 ] n 1 1

120 8 96 40 720

49 203 49 a1 _1 g

%0 270 192 © 148 1940 5080

63 469 967 1 23 1 1

280 540 2880 90 7160 1260 40320

6] 29531 267 1069 3 13 1 )

560 30240 640 3600 160 5726 8960 362880

7129 6515 4523 19 013 5 29 1 1

5040 6048 9072 128 703680 71384 96768 72515 3628800

7381 177133 84095 341693 8591 1513 2 n n 1

5040 151200 145152 71814400 207360 7209600 193536 272160 7257600 33916800
83711 190553 341747 139381 242537 1903 1083 1 1 ]

£5440 7151200 518400 604800 4354560 201600 0676800 120960 207360 6652800

1
475001600



2. Description and Implementation of Methods

TABLE 2.2—METHOD COEFFICIENTS FOR BACKWARD
DIFFERENTIATION FORMULA METHOD IN
NORMAL FORM OF ORDERS 1 TO 6

q 2 29 29 23 24 Qg 26
1 1 1
2 |3 |1
2 3 3 3
sle |2 [e |»
11 11 11 11
.l2e |80 |3 |10 |L
50 50 50 50 50
o |20 | 274 |25 |85 |15 | L
274 274 274 274 274 274
6 720 1764 | 1624 735 175 1
1764 1764 | 1764 1764 1764 | 1764 1764

method, but roundoff properties and computational effort depend on the
representation used, as discussed by Gear (ref. 10).

The first two columns of z,, and w,, are identical (see egs. (2.38a), (2.38b), and
(2.52)), and so {y=PBg and {; = 1. For the same reason the corrector iteration
procedures for Y, and h n_ﬂ[n remain unchanged (see egs. (2.45), (2.47), and
(2.65)). However, to facilitate estimation of the local truncation error, a different
iteration procedure than that given by equation (2.65) is used. To derive the new

formulation, z}™*1 is written as

U L L
or
. o m il .
2] _ 10 +2(z’[lj+] _ZIEJ]) (269)
j=0

Substituting the difference z,y"'l] - z,[z’] obtained from equation (2.65) into equa-
tion (2.69) produces

n n

mn -
MODID +2P—‘g(z,[,” )Q =z, + ¢ @)
=0

[m+1]

where g;; is defined as

26



2.4 Nordsieck's History Matrix

[m+1] ZP—I g( m) @71

It is clear from this equation that

=n

el My pt g(zfl'"]) . 272)
Equation (2.70) can be used to rewrite g (X,[,”’]), equation (2.16), as follows:

g(Y [”’]) h f(Y[m]) —h, ¥ el 73)

because f#; = 1.

Finally, because only the first two columns of z, enter into the solution of equa-
tion (2.5), the successive corrections can be accumulated and applied to the
remaining columns of z,, after convergence. Clearly, not updating all columns of
the Nordsieck history matrix after each iteration results in savings of computational
effort, especially when a high-order method is used and/or the number of ODE’s
is large. For additional savings of computer time the history matrix is updated
only if both (1) the iteration converges and (2) the converged solution satisfies
accuracy requirements.

The predictor-corrector formulation utilized in LSODE can be summarized as
follows:

Predictor:
[0]
z, =z n—lA
2.74)
[0]
e, =0.
Corrector:
f(X) =t X)) el
g|’:lm+1] — g'[lm] + P—l g( [m]) > m=0,1,....,M—1. (2.75)
[m+1] (0] [m-+1]
Xﬂ = X'I + 00 e

27



2. Description and Implementation of Methods

(2.76)

2.5 Local Truncation Error Estimate and Control!

The local truncation error is defined to be the amount by which the exact
solution Y (&) to the ODE system fails to satisfy the difference equation of the
numerical method (refs. 4, 10, 12, and 26). That is, for the linear multistep
methods, equation (2.1), the local truncation error vector d, at £, is the residual in
the difference formula when the apgroximations {Y;} and {f;} are replaced by the
exact solution and its derivative.” In LSODE, however, the basic multistep
formula is normalized by dividing it by

lAlthough the corrector convergence test is performed before the local truncation error
test (which is done only if the iteration converges), we discuss the accuracy test first
because the convergence test is based on it.

2As discussed in chapter 1, another commonly used definition for the local truncation
error is that it is the error incurred by the numerical method in advancing the approximate
solution by a single step assuming exact past values and no roundoff errors (refs. 12, 13,
and 21). Thatis, d,, is the difference between the numerical approximation Y% obtained by
using exact past values (i.e., { y(€,-)} and { y(§,_)}) and the exact solution Z(&,,):

*
gﬂ = Xn - Z(gn )s (2.77)
where, for example,
* g *
Y, = 2 @, Z(ﬁ,._ ,) + hnﬁoi(xn) (278)
j=1

for the BDF method of order q. For an explicit method the local truncation error given by
equation (2.77) and that obtained by using the definition given in the text above (i.e., the
residual of eq. (2.1)) have the same magnitude. However, for an implicit method the two
quantities are only approximately proportional to one another (ref. 4), although they agree
asymptotically in the limit of small step size.

28



2.5 Local Truncation Error Estimate and Control

for reasons given by Henrici (ref. 29) and Gear (ref. 10); however, see Lambert
(ref. 4). For example, the BDF method of order g, equation (2.4), can be
expressed in this form as

9 (.
0=3 (LY,  +h,t, 279)
=0\ Po

where 0p = —1. The local truncation error for this method is then given by

q .
(—1” = z [-([:—;]Z(gn— j) + hn Z(E-m)’ (2.80)

j=0

where d,, consists of N components

d,=(dy yrady,) - @81)

If we assume that each y; (i = 1,...,N) possesses derivatives of arbitrarily high
order, each y;(§,-) (i = 1....,N; j=1,...,q) in equation (2.80) can be expanded in a
Taylor series about &,,. Upon collecting terms the resulting expression for d,, can
be stated compactly as

d, =Gy yO(E,): 282)
k=0

where the {C} are constants (e.g., ref. 10). A method is said to be of order g if
Co=C1=..=C4=0, and Cgy1 # 0. The local truncation error is then given by

d, = Cpurhf*1y@*D(g,)+ O(rg+?), (2.83)

where the terms Cgy1 and Cgyqhd* y9*D(E,) are, respectively, called the error

constant and the principal local truncation error (ref. 4). In particular, for the BDF
method of order g in the normalized form given by equation (2.79) (refs. 22
and 29)

C

g+l = ﬁ. (2.843.)

For the implicit Adams method of order g in normalized form (ref. 22)

29



2. Description and Implementation of Methods

Cpu1 = |t (g +1)— )} (2.84b)

where g(g) and 0g(g + 1) are, respectively, the zeroth component of the coefficient
vectors for the AM method in normalized form of orders g and (g + 1).

The (g + 1)th derivative at &, y@*D(E,), is estimated as follows: As discussed
in section 2.4, at each step the solution method updates the Nordsieck history
matrix z,:

. K. q
z, = (Xn’ h,,g,,,z—"'ﬁ_(,, %X ,(Iq)J_ (2.85)

For either method of order ¢ the last column of z,, z,(g), contains the vector
n3Y,9Diq!, which is the approximation to A7 yD(E,)/q!. Now the prediction step
being a Taylor series method of order g does not alter the last column of z,_,
namely the vector h7Y@/q!. Hence the last column of z1%, zI%4), contains the
vector h9Y /g!. The difference, @ — (), is given by

0 Wy B RITL
z,(D-22(g) = — YP —?"'X,f‘i’l = ';_'Xff’* )+o(hg+2) (2.86)

by using the mean value theorem for derivatives. However, equation (2.76) gives
the following expression for z,,(g) — ;,[lol(q):

z,(9)— Mg = le, (2.87)

Equating equations (2.86) and (2.87) gives the following approximation for
RI1Y (9*D) if higher-order terms are neglected:

gq+1) _

g+l (.
h Y, :q!ﬂqgn. (2.88)

n

Substituting this equation into equation (2.83) and neglecting higher-order terms
give the following estimate for d,;:

d,= Cqu!qun. (2.89)

In order to provide for user control of the local truncation error, it is normalized

by the error weight vector EWT, , with element EWT, ,, defined by

30



2.5 Local Truncation Error Estimate and Control

EWT, , =RTOL,|Y; ,_,|+ATOL,, (2.90)
where the user-supplied local relative (RTOL;) and absolute (ATOL;) error toler-
ances for the ith solution component are discussed in chapter 4. The solution Y,,

is accepted as sufficiently accurate if the following inequality is satisfied:

4 =~ " i 221 2
||—n"= ﬁ% E_WT,: sS4 (291)

where |jo|| denotes the weighted root-mean-square (rms) norm, which is used for
reasons discussed by Hindmarsh (ref. 15). Equation (2.91) can be rewritten as

1 & e Y1
= | in
"gﬂ " = N é (EWTln J < Cq+1q! aq ’ (292)

by using equation (2.89). If we define the test coefficient 1(g.q) as

1
UG =7 (293)
Cpd! ] .
the accuracy test, equation (2.92), becomes
?
lea] < @0 2.94)
If we further define the quantity D, by
e
Dq = "‘n" , (2.95)
ug.9)
the accuracy test reduces to
?
D, <1 (296)

The reason for using two variables in the definition for T will become apparent
when we discuss step size and method order selection in section 2.7.

31



2. Description and Implementation of Methods
2.6 Corrector Convergence Test and Control

The test for corrector convergence is independent of both the integration
method and the iteration technique and is determined by the magnitude of the
lm—1]
Y

n

successive differences hniﬁl”’] -h,Y . To provide for user control of the

1

convergence process, the difference hniElm] —hnXElm_l is normalized by the

error weight vector EWT, , equation (2.90). Now, equation (2.33) provides the

following expression for hniElm] —h, XEI”"I] .
hnir[zm] - hn;YrEm_u = §,[1m], (297
where we have replaced P! g(X.r[zm_I]) by §r[1m]- Now, because
[m+1] _ X gl
m J
e =8
Jj=0

?
(see eq. (2.71)) and the test on Je,] is led < (g, ), equation (2.94), the following
test for convergence

2
[m]
Ly Bin ! g9

< (2.98)
EWT, , 2(g+2)

is consistent with the local truncation error test. The empirical factor 2(g + 2) in
equation (2.98) guarantees that the implicit equation (2.5) is solved to greater
accuracy than that required of the numerical solution (refs. 22 and 25).

To increase computational efficiency, especially when the iteration is clearly

not converging, LSODE uses the following convergence test instead of equa-
tion (2.98):

! Ug.9)
apguiitil Uy (2.99)
2(g+2)
The quantity €, is related to g,, by
g, =¢, min(l,1.5c, ), (2.100)

32



2.7 Step Size and Method Order Selection and Change
where
c,, =max(02c,_;,c,) (2.101)

m

and

Cp =€,/€, 4 (2.102)
is the estimated convergence rate (refs. 22 and 25). Clearly at least two iterations
are required before ¢, can be computed. For the first iteration c;, is set equal to
the last value of ¢,, from the previous step. For the first iteration of the very first
step and, in the case of NR or JN iteration, after every update of the Jacobian
matrix, ¢;, is set equal to 0.7. Equation (2.100) assumes that the iteration

converges linearly, that is, lim (€,+1/€,;) = finite constant ¢, and essentially
anticipates the magnitude o'%_;m one iteration in advance (ref. 15). Equation
(2.101) shows that the convergence rate of the latest iteration is given much more
weight than that of the previous iteration. The rationale for this decision is
discussed by Shampine (ref. 25), who examined various practical aspects of
implementing implicit methods.

2.7 Step Size and Method Order Selection
and Change

Periodically the code attempts to change the step size and/or the method order
to minimize computational work while maintaining prescribed accuracy. To
minimize complications associated with method order and step size selection, the
new order g’ is restricted to the values g — 1, g, and g + 1, where g is the current
order. For each g’ the step size #'(g’) that will satisfy exactly the local error bound
is obtained by assuming that the highest derivative remains constant. The method
order that produces the largest k' is used on the next step, along with the
corresponding &', provided that the k' satisfies certain restrictions described in
chapter 3.

For the case ¢’ = g, h'(g) is computed by setting Dy(h") (= value of D, for step
size h") = 1 (see eq. (2.96)), so that the local accuracy requirement is satisfied
exactly. Then because d,, varies as h,‘{+1 (see eq. (2.83)), we get

Bi{__hn_)"“

A C))
or
L
IRCIIN B
Tsame = hn ( DqJ » (2.103)

33



2. Description and Implementation of Methods
where r is the ratio of the step size to be attempted on the next step to its current
value. The subscript “same” indicates that the same order used on the current step
is to be attempted on the next step.

For the case ¢’ =g — 1, d,(g — 1) is of order g, where the variable g — 1 indicates
the method order for which the local truncation error is to be estimated, and

a1 =Chl yP €, (2.104)

where Cy = |Qo(q) - lo(g - 1)! for the AM method and 1/g for the BDF method
(refs. 22 and 29). Now, the last column of z,,, z,(g), contains the vector 1Y {P/g!
(see eq. (2.85)), and so d,(g — 1) is easily calculated. On using the rms norm,
equation (2.91), the error test for ¢’ = g — 1 becomes

2
Nlcry? | o

1 q'n‘in
— —— <1 2.105
2 EWT,. (2105)

i=l1

If we define the test coefficient ©(g,q — 1) as 1/Cyq!, equation (2.105) can be
written as

2

1 q!

2 4 N 2
\ N; EWT, , _1_2{ Z; ,(q) ]
_ _ N i=1 EWT, l 1

9-1 (g, g—1) g q-1)

., (2.106)

where z; ,(g) is the ith element of z,(g). The first variable in the definition for ©
gives the method order used on the current step. The second variable indicates the
method order for which the local truncation error is to be estimated.

The step size h'(g — 1) to be attempted on the next step, if the order is reduced to
g — 1, is obtained by using exactly the same procedur