

Approved for public release; further dissemination unlimited

Preprint
UCRL-JRNL-200037

SUNDIALS: Suite of
Nonlinear and
Differential/Algebraic
Equation Solvers

Alan C. Hindmarsh, Peter N. Brown, Keith E. Grant,
Steven L. Lee, Radu Serban, Dan E. Shumaker, and
Carol S. Woodward

This article will appear in 2005 in
ACM Transactions on Mathematical Software

September 2004

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the

Office of Scientific and Technical Information
P.O. Box 62, Oak Ridge, TN 37831

Prices available from (423) 576-8401
http://apollo.osti.gov/bridge/

Available to the public from the

National Technical Information Service
U.S. Department of Commerce

5285 Port Royal Rd.,
Springfield, VA 22161
http://www.ntis.gov/

OR

Lawrence Livermore National Laboratory

Technical Information Department’s Digital Library
http://www.llnl.gov/tid/Library.html

SUNDIALS: Suite of Nonlinear and
Differential/Algebraic Equation Solvers

ALAN C. HINDMARSH, PETER N. BROWN, KEITH E. GRANT, STEVEN L. LEE,

RADU SERBAN, DAN E. SHUMAKER, and CAROL S. WOODWARD

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory

SUNDIALS is a suite of advanced computational codes for solving large-scale problems that can
be modeled as a system of nonlinear algebraic equations, or as initial-value problems in ordinary
differential or differential-algebraic equations. The basic versions of these codes are called KIN-
SOL, CVODE, and IDA, respectively. The codes are written in ANSI standard C and are suitable
for either serial or parallel machine environments. Common and notable features of these codes
include: inexact Newton-Krylov methods for solving large-scale nonlinear systems; linear multi-
step methods for time-dependent problems; a highly modular structure to allow incorporation of
different preconditioning and/or linear solver methods; and clear interfaces allowing for users to
provide their own data structures underneath the solvers. We describe the current capabilities of
the codes, along with some of the algorithms and heuristics used to achieve efficiency and robust-
ness. We also describe how the codes stem from previous and widely used Fortran 77 solvers, and
how the codes have been augmented with forward and adjoint methods for carrying out first-order
sensitivity analysis with respect to model parameters or initial conditions.

Categories and Subject Descriptors: G.4 [Mathematical Software]: ; G.1.7 [Numerical Anal-
ysis]: Ordinary Differential Equations—Differential-algebraic equations; Multistep methods; Stiff
equations; G.1.5 [Numerical Analysis]: Roots of Nonlinear Equations—Iterative Methods; Con-
vergence

General Terms: Algorithms, Design

Additional Key Words and Phrases: ODEs, DAEs, Nonlinear Systems, Sensitivity Analysis

1. INTRODUCTION

With the ever-increasing capabilities of modern computers, simulation code devel-
opers are challenged to develop fast and robust software capable of solving problems
with increasingly higher resolutions and modeling more complex physical phenom-
ena. At the heart of many numerical simulation codes lie systems of nonlinear al-
gebraic or time-dependent equations, and simulation scientists continue to require
efficient solvers for these systems.

To meet this need, Lawrence Livermore National Laboratory has a long history

Authors’ address: Center for Applied Scientific Computing, Lawrence Livermore National Labo-
ratory, P.O. Box 808, Livermore, CA 94551.
This work was performed under the auspices of the U.S. Department of Energy by the University
of California, Lawrence Livermore National Laboratory, under contract No. W-7405-Eng-48.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20Y ACM 0098-3500/20Y/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y, Pages 1–32.

2 · Alan C. Hindmarsh et al.

of research and development in ordinary differential equation (ODE) methods and
software, as well as closely related areas, with emphasis on applications to partial
differential equations (PDEs). Among the popular Fortran 77 solvers written at
LLNL are the following:

—VODE: a solver for ODE initial-value problems for stiff/nonstiff systems, with
direct solution of linear systems, by Brown, Byrne, and Hindmarsh [Brown et al.
1989].

—VODPK: a variant of VODE with preconditioned Krylov (GMRES iteration
[Saad and Schultz 1986]) solution of the linear systems in place of direct methods,
by Brown, Byrne, and Hindmarsh [Byrne 1992].

—NKSOL: a Newton-Krylov (GMRES) solver for nonlinear algebraic systems, by
Brown and Saad [Brown and Saad 1990].

—DASPK: a solver for differential-algebraic equation (DAE) systems (a variant of
DASSL) with both direct and preconditioned Krylov solution methods for the
linear systems, by Brown, Hindmarsh, and Petzold [Brown et al. 1994].

Starting in 1993, the push to solve large systems in parallel motivated work to write
or rewrite solvers in C. Moving to the C language was done to: exploit features of
C not present in Fortran 77 while using languages with stable compilers (F90/95
were not yet stable when this work started); achieve a more object-oriented design;
facilitate the use of the codes with other object-oriented codes being written in C
and C++; maximize the reuse of code modules; and facilitate the extension from
a serial to a parallel implementation. The first result of the C effort was CVODE.
This code was a rewrite in ANSI standard C of the VODE and VODPK solvers
combined, for serial machines [Cohen and Hindmarsh 1994; 1996]. The next result
of this effort was PVODE, a parallel extension of CVODE [Byrne and Hindmarsh
1998; 1999]. Similar rewrites of NKSOL and DASPK followed, using the same
general design as CVODE and PVODE. The resulting solvers are called KINSOL
and IDA, respectively. More recently, we have merged the PVODE and CVODE
codes into a single solver, CVODE.

The main numerical operations performed in these codes are operations on data
vectors, and the codes have been written in terms of interfaces to these vector
operations. The result of this design is that users can relatively easily provide
their own data structures to the solvers by telling the solver about their structures
and providing the required operations on them. The codes also come with default
vector structures with pre-defined operation implementations for both serial and
distributed memory parallel environments in case a user prefers to not supply their
own structures. In addition, all parallelism is contained within specific vector op-
erations (norms, dot products, etc.) No other operations within the solvers require
knowledge of parallelism. Thus, using a solver in parallel consists of using a paral-
lel vector implementation, either the one provided with SUNDIALS, or the user’s
own parallel vector structure, underneath the solver. Hence, we no longer make a
distinction between parallel and serial versions of the codes.

These codes have been combined into the core of SUNDIALS, the SUite of Nonlin-
ear and DIfferential/Algebraic equation Solvers. This suite, consisting of CVODE,
KINSOL, and IDA (along with current and future augmentations to include for-
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers · 3

ward and adjoint sensitivity analysis capabilities), was implemented with the goal
of providing robust time integrators and nonlinear solvers that can easily be incor-
porated into existing simulation codes. The primary design goals were to require
minimal information from the user, allow users to easily supply their own data
structures underneath the solvers, and allow for easy incorporation of user-supplied
linear solvers and preconditioners.

As simulations have increased in size and complexity, the relationship between
computed results and problem parameters has become harder to establish. Sci-
entists have a greater need to understand answers to questions like the following.
Which model parameters are most influential? How can parameters be adjusted to
better match experimental data? What is the uncertainty in solutions given un-
certainty in data? Sensitivity analysis provides information about the relationship
between simulation results and model data, which can be critical to answering these
questions. In addition, for a given parameter, sensitivities can be computed in a
modest multiple of the computing time of the simulation itself.

SUNDIALS is being expanded to include forward and adjoint sensitivity versions
of the solvers. The first of these, CVODES, is complete. A brief description of the
strategy for adding sensitivity analysis in a way that respects the user interfaces of
the SUNDIALS codes is contained in this paper, and a more thorough description
of the CVODES package (which is distinct from but built on the same core code
as CVODE) is contained in a companion paper [Serban and Hindmarsh 2004].
The second sensitivity solver will be IDAS and is currently under development.
Extensions to KINSOL for sensitivity analysis will be completed if need arises.

The rest of this paper is organized as follows. In Section 2, the algorithms in the
three core solvers of SUNDIALS are presented. We have attempted to identify many
of the heuristics related to stopping criteria and finite-difference parameter selec-
tion where appropriate, as these items can sometimes affect algorithm performance
significantly. In Section 3, the preconditioning packages supplied with SUNDIALS
are described. Section 4 overviews the CVODES package and strategies for adding
sensitivity capabilities to the codes. Sections 5 and 6 describe the organization of
the codes within the suite and the philosophy of the user interface. Availability of
the codes is given in Section 7. Finally, comments on applications of SUNDIALS,
concluding remarks, and indications of future development are contained in the last
section.

2. THE BASIC SOLVERS

In this section we overview each of the three core solvers in SUNDIALS, giving a
detailed summary of the methods and algorithms used in each. Although many
of the algorithmic features are common to the three codes (e.g., finite-difference
Jacobian-vector approximations and stopping criteria), we still outline them with
respect to each package, as some of the details in their implementation are different.

All three of the solver descriptions below involve a number of heuristic rules,
safety factors, and the like. We do not attempt to justify or explain these heuristics
here, for two reasons. First, most of them are largely arbitrary, and have little or
no solid mathematical basis. For example, a safety factor less than 1 is needed in
many places (such as in step size selection based on estimated local error), but we

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

4 · Alan C. Hindmarsh et al.

know of no good argument for preferring any particular value over another. (In a
few cases, some performance testing was done to optimize heuristic parameters, but
this is rare.) The second reason is that all of these heuristics were inherited from
earlier solvers, and the documentation of those solvers includes some discussion
of the heuristics used. Each of the three descriptions cites the appropriate earlier
literature.

2.1 CVODE

CVODE solves ODE initial value problems in real N -space. We write such problems
in the form

ẏ = f(t, y) , y(t0) = y0 , (1)

where y ∈ RN . Here we use ẏ to denote dy/dt. While we use t to denote the
independent variable, and usually this is time, it certainly need not be. CVODE
solves both stiff and nonstiff systems. Roughly speaking, stiffness is characterized
by the presence of at least one rapidly damped mode, whose time constant is small
compared to the time scale of the solution itself. (See [Hairer and Wanner 1991]
for more on stiffness.)

The methods used in CVODE are variable-order, variable-step multistep meth-
ods, based on formulas of the form

K1∑

i=0

αn,iyn−i + hn

K2∑

i=0

βn,iẏn−i = 0 .

Here the yn are computed approximations to y(tn), and hn = tn − tn−1 is the step
size. The user of CVODE must choose appropriately from one of two families of
multistep formulas. For nonstiff problems, CVODE includes the Adams-Moulton
formulas, characterized by K1 = 1 and K2 = q above, where the order q varies
between 1 and 12. For stiff problems, CVODE includes the Backward Differentia-
tion Formulas (BDFs) in so-called fixed-leading coefficient form, given by K1 = q
and K2 = 0, with order q varying between 1 and 5. The coefficients are uniquely
determined by the method type, its order, the recent history of the step sizes (the
last q values), and the normalization αn,0 = −1. See [Byrne and Hindmarsh 1975]
and [Jackson and Sacks-Davis 1980].

For either choice of formula, the nonlinear system

G(yn) ≡ yn − hnβn,0f(tn, yn)− an = 0 , (2)

where an ≡
∑

i>0(αn,iyn−i + hnβn,iẏn−i), must be solved (approximately) at each
integration step. For this, CVODE offers the choice of either functional iteration,
suitable only for nonstiff systems, and various versions of Newton iteration. If we
denote the Newton iterates by yn,m, then functional iteration, given by

yn,m+1 = hnβn,0f(tn, yn,m) + an ,

involves evaluations of f only. In contrast, Newton iteration requires the solution
of linear systems

M [yn,m+1 − yn,m] = −G(yn,m) ,

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers · 5

in which

M ≈ I − γJ , J = ∂f/∂y , and γ = hnβn,0 . (3)

In either case, the initial guess for the iteration is a predicted value yn,0 computed
explicitly from the available history data (the last q + 1 computed values of y or
ẏ). For the Newton corrections, CVODE provides a choice of four methods:

—a dense direct solver (serial version only),
—a band direct solver (serial version only),
—a diagonal approximate Jacobian solver [Radhakrishnan and Hindmarsh 1993],

or
—SPGMR = Scaled Preconditioned GMRES, without restarts [Brown and Hind-

marsh 1989].

(By “serial version” we mean the CVODE solver with the serial NVECTOR module
attached.)

For large stiff systems, where direct methods are not feasible, the combination
of a BDF integrator with the SPGMR algorithm yields a powerful tool because it
combines established methods for stiff integration, nonlinear iteration, and Krylov
(linear) iteration with a problem-specific treatment of the dominant source of stiff-
ness, in the form of the user-supplied preconditioner matrix [Brown and Hindmarsh
1989].

In the process of controlling errors at various levels, CVODE uses a weighted
root-mean-square norm, denoted ‖ · ‖WRMS, for all error-like quantities:

‖v‖WRMS =

√√√√N−1

N∑
1

(vi/Wi)2 . (4)

The weights Wi are based on the current solution (with components denoted yi),
and on the relative tolerance rtol and absolute tolerances atoli input by the user,
namely

Wi = rtol · |yi|+ atoli . (5)

Because Wi represents a tolerance in the component yi, a vector representing a
perturbation in y and having norm of 1 is regarded as “small.” For brevity, we will
usually drop the subscript WRMS on norms in what follows.

In the cases of a direct solver (dense, band, or diagonal), the iteration is a Mod-
ified Newton iteration, in that the iteration matrix M is fixed throughout the non-
linear iterations. However, for SPGMR, it is an Inexact Newton iteration, in which
M is applied in a matrix-free manner, with matrix-vector products Jv obtained by
either difference quotients or a user-supplied routine. The matrix M (direct cases)
or preconditioner matrix P (SPGMR case) is updated as infrequently as possible,
to balance the high costs of matrix operations against other costs. Specifically, this
matrix update occurs when:

—starting the problem,
—more than 20 time steps have been taken since the last update,
—the current value of γ and its value at the last update (γ̄) satisfy |γ/γ̄− 1| > 0.3,

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

6 · Alan C. Hindmarsh et al.

—a convergence failure just occurred, or
—an error test failure just occurred.

When forced by a convergence failure, an update of M or P may or may not involve
a re-evaluation of J (in M) or of Jacobian data (in P), depending on whether
Jacobian error was the likely cause of the failure. More generally, the decision is
made to re-evaluate J (or instruct the user to re-evaluate Jacobian data in P) when:

—starting the problem,
—more than 50 steps have been taken since the last evaluation,
—a convergence failure occurred with an outdated matrix, and the value γ̄ of γ at

the last update satisfies |γ/γ̄ − 1| < 0.2, or
—a convergence failure occurred that forced a step size reduction.

The stopping test for the Newton iteration is related to the subsequent local
error test, with the goal of keeping the nonlinear iteration errors from interfering
with local error control. The final computed iterate yn,m will have to satisfy a local
error test ‖yn,m − yn,0‖ ≤ ε, where ε is an error test constant described below.
Letting yn denote the exact solution of (2), we want to ensure that the iteration
error yn − yn,m is small relative to ε, specifically that it is less than 0.1ε. (The
safety factor 0.1 can be changed by the user.) For this, we also estimate the linear
convergence rate constant R as follows. We initialize R to 1, and reset R = 1 when
M or P is updated. After computing a correction δm = yn,m − yn,m−1, we update
R if m > 1 as

R ← max{0.3R, ‖δm‖/‖δm−1‖} ,

and we use the estimate

‖yn − yn,m‖ ≈ ‖yn,m+1 − yn,m‖ ≈ R‖yn,m − yn,m−1‖ = R‖δm‖ .

Therefore the convergence (stopping) test is

R‖δm‖ < 0.1ε .

We allow at most 3 iterations (but this limit can be changed by the user). We also
declare the iteration to be diverging if any ‖δm‖/‖δm−1‖ > 2 with m > 1. If the
iteration fails to converge with a current J or P , we are forced to reduce the step
size, and we replace hn by hn/4. The integration is halted after a preset number of
convergence failures; the default value of this limit is 10, but this can be changed
by the user.

When SPGMR is used to solve the linear system, its errors must also be con-
trolled, and this also involves the local error test constant ε. The linear iteration
error in the solution vector δm is approximated by the preconditioned residual vec-
tor. Thus to ensure (or attempt to ensure) that the linear iteration errors do not
interfere with the nonlinear error and local integration error controls, we require
that the norm of the preconditioned residual in SPGMR is less than 0.05 · (0.1ε).

With the direct dense and band methods, the Jacobian may be supplied by a
user routine, or approximated by difference quotients, at the user’s option. In the
latter case, we use the usual approximation

Jij = [f i(t, y + σjej)− f i(t, y)]/σj .

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers · 7

The increments σj are given by

σj = max
{√

U |yj |, σ0Wj

}
,

where U is the unit roundoff, σ0 is a dimensionless value (involving the unit roundoff
and the norm of ẏ), and Wj is the error weight defined in (5). In the dense case, this
scheme requires N evaluations of f , one for each column of J . In the band case, the
columns of J are computed in groups, by the Curtis-Powell-Reid algorithm [Curtis
et al. 1974], with the number of f evaluations equal to the bandwidth.

In the case of SPGMR, preconditioning may be used on the left, on the right, or
both, with user-supplied routines for the preconditioning setup and solve operations,
and optionally also for the required matrix-vector products Jv. If a routine for Jv
is not supplied, these products are computed as

Jv = [f(t, y + σv)− f(t, y)]/σ . (6)

The increment σ is 1/‖v‖, so that σv has norm 1.
A critical part of CVODE, making it an ODE “solver” rather than just an ODE

method, is its control of local error. At every step, the local error is estimated and
required to satisfy tolerance conditions, and the step is redone with reduced step
size whenever that error test fails. As with any linear multistep method, the local
truncation error LTE, at order q and step size h, satisfies an asymptotic relation

LTE = Chq+1y(q+1) + O(hq+2)

for some constant C, under mild assumptions on the step sizes. A similar relation
holds for the error in the predictor yn,0. These are combined to get a relation

LTE = C ′[yn − yn,0] + O(hq+2) ,

where C ′ is another known constant. The local error test is simply ‖LTE‖ ≤ 1
(recalling that a vector of WRMS norm 1 is considered small). Using yn = yn,m

(the last iterate computed) above, the local error test is performed on the predictor-
corrector difference ∆n ≡ yn,m − yn,0, and takes the form

‖∆n‖ ≤ ε ≡ 1/|C ′| .
If this test passes, the step is considered successful. If it fails, the step is rejected
and a new step size h′ is computed based on the asymptotic behavior of the local
error, namely by the equation

(h′/h)q+1‖∆n‖ = ε/6 .

Here 1/6 is a safety factor. A new attempt at the step is made, and the error test
repeated. If it fails three times, then the order q is reset to 1 (if it was > 1), or (if
q = 1) the step is restarted from a fresh value of f (discarding all history data).
The ratio h′/h is restricted (during the current step only) to be ≤ 0.2 after two
error test failures, and to be ≥ 0.1 after three. After seven failures, CVODE returns
to the user with a give-up message.

In addition to adjusting the step size to meet the local error test, CVODE period-
ically adjusts the order, with the goal of maximizing the step size. The integration
starts out at order 1 and varies the order dynamically after that. The basic idea

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

8 · Alan C. Hindmarsh et al.

is to pick the order q for which a polynomial of order q best fits the discrete data
involved in the multistep method. However, if either a convergence failure or an
error test failure occurs on any given step, no change in step size or order is allowed
on the next step. At the current order q, selecting a new step size is done exactly
as when the error test fails, giving a tentative step size ratio

h′/h = (ε/6‖∆n‖)1/(q+1) ≡ ηq .

We consider changing order only after taking q + 1 steps at order q, and then we
consider only orders q′ = q − 1 (if q > 1) or q′ = q + 1 (if q < max. order allowed).
The local truncation error at order q′ is estimated using the history data. Then a
tentative step size ratio is computed on the basis that this error, LTEq′ , behaves
asymptotically as hq′+1. With safety factors of 1/6 and 1/10 respectively, these
ratios are:

h′/h = [1/6‖LTEq−1‖]1/q ≡ ηq−1

and

h′/h = [1/10‖LTEq+1‖]1/(q+2) ≡ ηq+1 .

The new order and step size are then set according to

η = max{ηq−1, ηq, ηq+1} , h′ = ηh ,

with q′ set to the index achieving the above maximum. However, if we find that
η < 1.5, we do not bother with the change. Also, h′/h is always limited to 10,
except on the first step, when it is limited to 104.

The various algorithmic features of CVODE described above, as inherited from
VODE and VODPK, are documented in [Brown et al. 1989; Byrne 1992; Hindmarsh
2000]. A full description of the usage of CVODE is given in [Hindmarsh and Serban
2004a].

There is an important additional part of the CVODE order selection algorithm
that is not based on local error, but instead provides protection against potentially
unstable behavior of the BDF methods. At order 1 or 2, the BDF method is A-
stable. But at orders 3 to 5 it is not, and the region of instability includes a portion
of the left half-plane that is concentrated near the imaginary axis. The size of that
region of instability grows as the order increases from 3 to 5. What this means is
that when running BDF at these higher orders, if an eigenvalue λ of the system
lies close enough to the imaginary axis, the step sizes, h, for which the method is
stable are limited (at least according to the linear stability theory) to a set that
prevents hλ from leaving the stability region. System eigenvalues that are likely
to cause this instability are ones that correspond to weakly damped oscillations,
such as might arise from a semi-discretized advection-diffusion PDE with advection
dominating over diffusion.

CVODE includes an optional algorithm called STALD (STAbility Limit Detec-
tion), which attempts to detect directly the presence of a stability region boundary
that is limiting the step sizes in the presence of a weakly damped oscillation [Hind-
marsh 1992]. Working directly with history data that is readily available, if it
concludes that the step size is in fact stability-limited, it dictates a reduction in the
method order, regardless of the outcome of the error-based algorithm.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers · 9

STALD has been tested in combination with the VODE solver on linear advection-
dominated advection-diffusion problems [Hindmarsh 1995], where it works well.
The implementation in CVODE has been successfully tested on linear and non-
linear advection-diffusion problems, among others. The STALD option adds some
overhead computational cost to the CVODE solution. In timing tests, these over-
head costs have ranged from 2% to 7% of the total, depending on the size and
complexity of the problem, with lower relative costs for larger problems. Therefore,
it should be activated only when there is reasonable expectation of modes in the
user’s system for which it is appropriate, together with poor performance at orders
3–5, for no apparent reason, with the option turned off.

Normally, CVODE takes steps until a user-defined output value t = tout is over-
taken, and then it computes y(tout) by interpolation. However, a “one step” mode
option is available, where control returns to the calling program after each step.
There are also options to force CVODE not to integrate past a given stopping point
t = tstop.

Lastly, CVODE has been augmented to include a rootfinding feature, whereby
the roots of a set of user-defined functions gi(t, y) can be found while integrating
the initial value problem for y(t). The algorithm checks for changes in sign in the
gi over each time step, and when a sign change is found, it homes in on the root(s)
with a weighted secant iteration method [Hiebert and Shampine 1980]. (CVODE
also checks for exact zeros of the gi.) The iteration stops when the root is bracketed
within a tolerance that is near the roundoff level of t.

2.2 KINSOL

KINSOL solves nonlinear algebraic systems in real space, which we write as

F (u) = 0 , F : RN → RN , (7)

given an initial guess u0. It is a rewrite in C of the Fortran 77 code NKSOL of
Brown and Saad [Brown and Saad 1990].

KINSOL employs the Inexact Newton method developed in [Brown and Saad
1990; Brown 1987; Dembo et al. 1982] and further described in [Dennis and Schnabel
1996; Kelley 1995], resulting in the following iteration:

Inexact Newton iteration

(1) Set u0 = an initial guess

(2) For n = 0, 1, 2, ... until convergence do:
(a) Approximately solve J(un)δn = −F (un)
(b) Set un+1 = un + λδn, λ ≤ 1
(c) Test for convergence

Here, un is the nth iterate to u, and J(u) = F ′(u) is the system Jacobian. As
this code module is anticipated for use on large systems, only iterative methods are
provided to solve the system in step 2(a). These solutions are only approximate. At
each stage in the iteration process, a scalar multiple of the approximate solution,
δn, is added to un to produce a new iterate, un+1. A test for convergence is made
before the iteration continues.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

10 · Alan C. Hindmarsh et al.

The linear iterative method currently implemented is one of the class of Krylov
methods, GMRES [Brown and Hindmarsh 1989; Saad and Schultz 1986], provided
through the SPGMR module common to all SUNDIALS codes. Use of SPGMR
provides a linear solver which, by default, is applied in a matrix-free manner,
with matrix-vector products Jv obtained by either finite difference quotients or
a user-supplied routine. In the case where finite differences are used, the matrix-
vector product J(u)v is approximated by a quotient of the form given in (6), where
f(t, y) = F (y) for our nonlinear system, u is the current approximation to a root
of (7), and σ is a scalar. The choice of σ is taken from [Brown and Saad 1990] and
is given by

σ =
max{|uT v|, typuT |v|}

‖v‖2 sign(uT v)
√

U , (8)

where typu is a vector of typical values for the absolute values of the solution (and
can be taken to be inverses of the scale factors given for u as described below), and
U is unit roundoff. Convergence of the Newton method is maintained as long as
the value of σ remains appropriately small as shown in [Brown 1987].

To the above methods are added scaling and preconditioning. Scaling is allowed
for both the solution vector and the system function vector. For scaling to be used,
the user should supply values Du, which are diagonal elements of the scaling matrix
such that Duun has all components roughly the same magnitude when un is close
to a solution, and DF F has all components roughly the same magnitude when un

is not too close to a solution. In the text below, we use the following scaled norms:

‖z‖Du = ‖Duz‖2, ‖z‖DF
= ‖DF z‖2, and ‖z‖D,∞ = ‖Dz‖∞, (9)

where ‖ · ‖∞ is the max norm. When scaling values are provided for the solution
vector, these values are automatically incorporated into the calculation of σ in (8).
Additionally, right preconditioning is provided if the preconditioning setup and
solve routines are supplied by the user. In this case, GMRES is applied to the
linear systems (JP−1)(Pδ) = −F .

Two methods of applying a computed step δn to the previously computed solution
vector are implemented. The first and simplest is the Inexact Newton strategy
which applies step 2(b) as above with λ always set to 1. The other method is
a global strategy, which attempts to use the direction implied by δn in the most
efficient way for furthering convergence of the nonlinear problem. This technique is
implemented in the second strategy, called Linesearch. This option employs both
the α and β conditions of the Goldstein-Armijo linesearch given in [Dennis and
Schnabel 1996] for step 2(b), where λ is chosen to guarantee a sufficient decrease
in F relative to the step length as well as a minimum step length relative to the
initial rate of decrease of F . One property of the algorithm is that the full Newton
step tends to be taken close to the solution. For more details, the reader is referred
to [Dennis and Schnabel 1996].

Stopping criteria for the Newton method can be required for either or both of
the nonlinear residual and the step length. For the former, the Newton iteration
must pass a stopping test

‖F (un)‖DF ,∞ < ftol ,

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers · 11

where ftol is an input scalar tolerance with a default value of U1/3. For the latter,
the Newton method will terminate when the maximum scaled step is below a given
tolerance

‖δn‖Du,∞ < steptol ,

where steptol is an input scalar tolerance with a default value of U2/3.
Three options for stopping criteria for the linear system solve are implemented,

including the two algorithms of Eisenstat and Walker [Eisenstat and Walker 1996].
The Krylov iteration must pass a stopping test

‖Jδn + F‖DF
< (ηn + U)‖F‖DF

,

where ηn is one of:

—Eisenstat and Walker Choice 1

ηn =
| ‖F (un)‖DF

− ‖F (un−1) + J(un−1)δn‖DF
|

‖F (un−1)‖DF

,

—Eisenstat and Walker Choice 2

ηn = γ

(‖F (un)‖DF

‖F (un−1)‖DF

)α

,

where default values of γ and α are 0.9 and 2, respectively.
—ηn = constant with 0.1 as the default.

The default is Eisenstat and Walker Choice 1. For both options 1 and 2, appropriate
safeguards are incorporated to ensure that η does not decrease too fast [Eisenstat
and Walker 1996].

As a user option, KINSOL permits the application of inequality constraints,
ui > 0 and ui < 0, as well as ui ≥ 0 and ui ≤ 0, where ui is the ith component
of u. Any such constraint, or no constraint, may be imposed on each component.
KINSOL will reduce step lengths in order to ensure that no constraint is violated.
Specifically, if a new Newton iterate will violate a constraint, the maximum (over
all i) step length along the Newton direction that will satisfy all constraints is found
and δn in Step 2(b) is scaled to take a step of that length.

2.3 IDA

The IDA code is a C implementation of a previous code, DASPK, a DAE system
solver written in Fortran 77 by Petzold, Brown, and Hindmarsh [Brown et al. 1994;
Brenan et al. 1996]. IDA solves the initial-value problem for a DAE system of the
general form

F (t, y, ẏ) = 0 , y(t0) = y0 , ẏ(t0) = ẏ0 , (10)

where y, ẏ, and F are vectors in RN , t is the independent variable, ẏ = dy/dt, and
initial conditions y(t0) = y0, ẏ(t0) = ẏ0 are given. (Often t is time, but it certainly
need not be.)

Prior to integrating a DAE initial-value problem, an important requirement is
that the pair of vectors y0 and ẏ0 are both initialized to satisfy the DAE residual
F (t0, y0, ẏ0) = 0. For a class of problems that includes so-called semi-explicit index-
one systems [Brenan et al. 1996], IDA provides a routine that computes consistent

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

12 · Alan C. Hindmarsh et al.

initial conditions from a user’s initial guess [Brown et al. 1998]. For this, the
user must identify subvectors of y (not necessarily contiguous), denoted yd and ya,
which are its differential and algebraic parts, respectively, such that F depends on
ẏd but not on any components of ẏa. The assumption that the system is “index
one” means that for a given t and yd, the system F (t, y, ẏ) = 0 defines ya uniquely.
In this case, a solver within IDA computes ya and ẏd at t = t0, given yd and an
initial guess for ya.

A second available option with this solver also computes all of y(t0) given ẏ(t0);
this is intended mainly for quasi-steady-state problems, where ẏ(t0) = 0 is given. In
both cases, IDA solves the system F (t0, y0, ẏ0) = 0 for the unknown components of
y0 and ẏ0, using Newton iteration augmented with a line search global strategy. In
doing this, it makes use of the existing machinery that is to be used for solving the
linear systems during the integration, in combination with certain tricks involving
the step size (which is set artificially for this calculation).

For problems that do not fall into either of these categories, the user is responsible
for passing consistent values or risk failure in the numerical integration.

The integration method in IDA is variable-order, variable-coefficient BDF, in
fixed-leading-coefficient form [Brenan et al. 1996]. The method order ranges from
1 to 5, with the BDF of order q given by the multistep formula

q∑

i=0

αn,iyn−i = hnẏn , (11)

where yn and ẏn are the computed approximations to y(tn) and ẏ(tn), respectively,
and the step size is hn = tn − tn−1. The coefficients αn,i are uniquely determined
by the order q, and the history of the step sizes. The application of the BDF (11)
to the DAE system (10) results in a nonlinear algebraic system to be solved at each
step:

G(yn) ≡ F

(
tn, yn, h−1

n

q∑

i=0

αn,iyn−i

)
= 0 . (12)

Regardless of the method options, the solution of the nonlinear system (12) is
accomplished with some form of Newton iteration. This leads to a linear system
for each Newton correction, of the form

J [yn,m+1 − yn,m] = −G(yn,m) , (13)

where yn,m is the m-th approximation to yn. Here J is some approximation to the
system Jacobian

J =
∂G

∂y
=

∂F

∂y
+ α

∂F

∂ẏ
, (14)

where α = αn,0/hn. The scalar α changes whenever the step size or method order
changes. The linear systems are solved by one of three methods:

—direct dense solve (serial version only),
—direct banded solve (serial version only), or
—SPGMR = Scaled Preconditioned GMRES, with restarts allowed.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers · 13

(By “serial version” we mean the IDA solver with the serial NVECTOR module
attached.) For the SPGMR case, preconditioning is allowed only on the left,1 so
that GMRES is applied to systems (P−1J)∆y = −P−1G.

In the process of controlling the various errors, IDA uses the same weighted root-
mean-square norm as CVODE, ‖ · ‖WRMS, for all error-like quantities. The weights
used are based on the current solution and on input tolerances, as given by (5).

In the cases of a direct linear solver (dense or banded), the nonlinear iteration
(13) is a Modified Newton iteration, in that the Jacobian J is fixed (and usually out
of date), with a coefficient ᾱ in place of α in J . When using SPGMR as the linear
solver, the iteration is an Inexact Newton iteration, using the current Jacobian
(through matrix-free products Jv), in which the linear residual J∆y +G is nonzero
but controlled. The Jacobian matrix J (direct cases) or preconditioner matrix P
(SPGMR case) is updated when:

—starting the problem,
—the value ᾱ at the last update is such that α/ᾱ < 3/5 or α/ᾱ > 5/3, or
—a non-fatal convergence failure occurred with an out-of-date J or P .

The above strategy balances the high cost of frequent matrix evaluations and pre-
processing with the slow convergence due to infrequent updates. To reduce storage
costs on an update, Jacobian information is always reevaluated from scratch.

Unlike the CVODE/CVODES case, the stopping test for the Newton iteration
in IDA ensures that the iteration error yn − yn,m is small relative to y itself. For
this, we estimate the linear convergence rate at all iterations m > 1 as

R = (‖δm‖/‖δ1‖)
1

m−1 ,

where the δm = yn,m − yn,m−1 is the correction at iteration m = 1, 2, The
Newton iteration is halted if R > 0.9. The convergence test at the m-th iteration
is then

S‖δm‖ < 0.33 , (15)

where S = R/(R − 1) whenever m > 1 and R ≤ 0.9. The user has the option of
changing the constant in the convergence test from its default value of 0.33. The
quantity S is set to 20 initially and whenever J or P is updated, and it is reset to
100 on a step with α 6= ᾱ. Note that at m = 1, the convergence test (15) uses an
old value for S. Therefore, at the first Newton iteration, we make an additional test
and stop the iteration if ‖δ1‖ < 0.33·10−4 (since such a δ1 is probably just noise and
therefore not appropriate for use in evaluating R). We allow only a small number
(default value 4) of Newton iterations. If convergence fails with J or P current, we
are forced to reduce the step size hn, and we replace hn by hn/4. The integration
is halted after a preset number (default value 10) of convergence failures. Both the
maximum allowable Newton iterations and the maximum nonlinear convergence
failures can be changed by the user from their default values.

1Left preconditioning is required in order to make the norm of the (preconditioned) linear residual
in the Newton iteration meaningful. Otherwise this WRMS-norm, ‖J∆y + G‖, is meaningless in
general, because it involves division by weights that correspond to y, not G. The appropriate
scalings for the components of G, or even their physical units, need not agree with those of y.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

14 · Alan C. Hindmarsh et al.

When SPGMR is used to solve the linear system, to minimize the effect of linear
iteration errors on the nonlinear and local integration error controls, we require
the preconditioned linear residual to be small relative to the allowed error in the
Newton iteration, i.e., ‖P−1(Jx + G)‖ < 0.05 · 0.33. The safety factor 0.05 can be
changed by the user.

In the direct cases, the Jacobian J defined in (14) can be either supplied by the
user or have IDA compute one internally by difference quotients. In the latter case,
we use the approximation

Jij = [F i(t, y + σjej , ẏ + ασjej)− F i(t, y, ẏ)]/σj , with

σj =
√

U max
{|yj |, |hẏj |,Wj

}
sign(hẏj) ,

where U is the unit roundoff, h is the current step size, and Wj is the error weight
for yj defined by (5). In the SPGMR case, if a routine for Jv is not supplied, such
products are approximated by

Jv = [F (t, y + σv, ẏ + ασv)− F (t, y, ẏ)]/σ ,

where the increment σ is 1/‖v‖ (as with CVODE).2 (As an option, the user can
specify a constant factor that is inserted into this expression for σ).

During the course of integrating the system, IDA computes an estimate of the
local truncation error LTE at the n-th time step, and requires this to satisfy the
inequality

‖LTE‖ ≤ 1 .

Asymptotically, LTE varies as hq+1 at step size h and order q, as does the predictor-
corrector difference ∆n ≡ yn − yn,0. Thus there is a constant C such that

LTE = C∆n + O(hq+2) ,

and so the norm of LTE is estimated as |C| · ‖∆n‖. In addition, IDA requires that
the error in the associated polynomial interpolant over the current step be bounded
by 1 in norm. The leading term of the norm of this error is bounded by C̄‖∆n‖ for
another constant C̄. Thus the local error test in IDA is

max{|C|, C̄}‖∆n‖ ≤ 1 . (16)

A user option is available by which the algebraic components of the error vector
are omitted from the test (16), if these have been so identified.

In IDA, the local error test is tightly coupled with the logic for selecting the step
size and order. First, there is an initial phase that is treated specially; for the first
few steps, the step size is doubled and the order raised (from its initial value of 1)
on every step, until (a) the local error test (16) fails, (b) the order is reduced (by
the rules given below), or (c) the order reaches 5 (the maximum). For step and
order selection on the general step, IDA uses a different set of local error estimates,
based on the asymptotic behavior of the local error in the case of fixed step sizes.
At each of the orders q′ equal to q, q − 1 (if q > 1), q − 2 (if q > 2), or q + 1 (if

2All vectors v occurring here have been divided by the weights Wi and then scaled so as to have
L2 norm equal to 1. Thus, in fact σ = 1/‖v‖WRMS =

√
N .

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers · 15

q < 5), there are constants Cq′ such that the norm of the local truncation error at
order q′ satisfies

LTEq′ = Cq′‖φ(q′ + 1)‖+ O(hq′+2) ,

where φ(k) is a modified divided difference of order k that is retained by IDA (and
behaves asymptotically as hk). Thus the local truncation errors are estimated as
ELTEq′ = Cq′‖φ(q′+1)‖ to select step sizes. But the choice of order in IDA is based
on the requirement that the scaled derivative norms, ‖hky(k)‖, are monotonically
decreasing with k, for k near q. These norms are again estimated using the φ(k),
and in fact

‖hq′+1y(q′+1)‖ ≈ T (q′) ≡ (q′ + 1)ELTEq′ .

The step/order selection begins with a test for monotonicity that is made even
before the local error test is performed. Namely, the order is reset to q′ = q − 1 if
(a) q = 2 and T (1) ≤ T (2)/2, or (b) q > 2 and max{T (q − 1), T (q − 2)} ≤ T (q);
otherwise q′ = q. Next the local error test (16) is performed, and if it fails, the step
is redone at order q ← q′ and a new step size h′. The latter is based on the hq+1

asymptotic behavior of ELTEq, and, with safety factors, is given by

η = h′/h = 0.9/[2 ELTEq]1/(q+1) .

The value of η is adjusted so that 0.25 ≤ η ≤ 0.9 before setting h ← h′ = ηh. If
the local error test fails a second time, IDA uses η = 0.25, and on the third and
subsequent failures it uses q = 1 and η = 0.25. After 10 failures, IDA returns with
a give-up message.

As soon as the local error test has passed, the step and order for the next step
may be adjusted. No such change is made if q′ = q− 1 from the prior test, if q = 5,
or if q was increased on the previous step. Otherwise, if the last q + 1 steps were
taken at a constant order q < 5 and a constant step size, IDA considers raising the
order to q+1. The logic is as follows: (a) If q = 1, then reset q = 2 if T (2) < T (1)/2.
(b) If q > 1 then

—reset q ← q − 1 if T (q − 1) ≤ min{T (q), T (q + 1)};
—else reset q ← q + 1 if T (q + 1) < T (q);
—leave q unchanged otherwise [then T (q − 1) > T (q) ≤ T (q + 1)].

In any case, the new step size h′ is set much as before:

η = h′/h = 1/[2 ELTEq]1/(q+1) .

The value of η is adjusted such that (a) if η > 2, η is reset to 2; (b) if η ≤ 1, η is
restricted to 0.5 ≤ η ≤ 0.9; and (c) if 1 < η < 2 we use η = 1. Finally h is reset
to h′ = ηh. Thus we do not increase the step size unless it can be doubled. See
[Brenan et al. 1996] for details.

IDA permits the user to impose optional inequality constraints on individual
components of the solution vector y. Any of the following four constraints can be
imposed: yi > 0, yi < 0, yi ≥ 0, or yi ≤ 0. The constraint satisfaction is tested
after a successful nonlinear system solution. If any constraint fails, we declare a
convergence failure of the Newton iteration and reduce the step size. Rather than
cutting the step size by some arbitrary factor, IDA estimates a new step size h′

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

16 · Alan C. Hindmarsh et al.

using a linear approximation of the components in y that failed the constraint test
(including a safety factor of 0.9 to cover the strict inequality case). These additional
constraints are also imposed during the calculation of consistent initial conditions.

Normally, IDA takes steps until a user-defined output value t = tout is overtaken,
and then computes y(tout) by interpolation. However, a “one step” mode option is
available, where control returns to the calling program after each step. There are
also options to force IDA not to integrate past a given stopping point t = tstop.

3. PRECONDITIONING

All of the SUNDIALS solvers make repeated use of a Krylov method to solve
linear systems of the form A (correction vector) = -(residual vector), where A is
an appropriate Jacobian or Newton matrix. But simple (unpreconditioned) Krylov
methods are rarely successful; it is generally necessary to precondition the system
in order to obtain acceptable efficiency. A system Ax = b can be preconditioned
on the left, as (P−1A)x = P−1b; on the right, as (AP−1)Px = b; or on both sides,
as (P−1

L AP−1
R)PRx = P−1

L b. The Krylov method is then applied to a system with
the matrix P−1A, or AP−1, or P−1

L AP−1
R , instead of A. In order to improve the

convergence of the Krylov iteration, the preconditioner matrix P , or the product
PLPR in the last case, should in some sense approximate the system matrix A. Yet
at the same time, in order to be cost-effective, the matrix P , or matrices PL and
PR, should be reasonably efficient to evaluate and solve. Finding a good point in
this tradeoff between rapid convergence and low cost can be very difficult. Good
choices are often problem-dependent, but not always, as we show below.

The CVODE and CVODES solvers allow for preconditioning either side, or on
both sides, although we know of no situation where preconditioning on both sides
is clearly superior to preconditioning on one side only (with the product PLPR). In
contrast, as noted in the previous section, KINSOL allows only right precondition-
ing, while IDA and IDAS allow only left preconditioning.

Typical preconditioners used with the solvers in SUNDIALS are based on ap-
proximations to the Jacobian matrices of the systems involved. Because the Krylov
iteration occurs within a Newton iteration, and often also within a time integration,
and each of these iterations has its own test for convergence, the preconditioner may
use a very crude approximation, as long as it captures the dominant numerical fea-
ture(s) of the system. We have found that the combination of a preconditioner
with the Newton-Krylov iteration, using even a fairly poor approximation to the
Jacobian, can be surprisingly superior to using the same matrix without Krylov ac-
celeration (i.e., a modified Newton iteration), as well as to using the Newton-Krylov
method with no preconditioning.

We further exploit this nested iteration setting, and differences in the costs of
the various preconditioner operations, by treating in two separate phases each pre-
conditioner matrix P involved:

—a setup phase: evaluate and preprocess P (done infrequently), and

—a solve phase: solve systems Px = b (done frequently).

Accordingly, the user of each solver must supply two separate routines for these
operations. The setup of P is generally more expensive than the solve operation,
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers · 17

and so it is done as infrequently as possible, with updates to P dictated primarily
by convergence failures of the Newton iteration. The system solves Px = b must
of course be done at every Krylov iteration (once for each matrix in the case of
two-sided preconditioning).

We provide help to SUNDIALS users with respect to preconditioning in two
ways. First, for each solver, there is at least one example problem program which
illustrates a preconditioner for reaction-diffusion systems, based on the concept
of operator splitting. The example does not perform operator splitting (which
generally requires giving up error control), but builds the preconditioner from one
of two operators (reaction) in the problem. These examples are intended to serve
as templates for possible user-defined preconditioners in similar applications. See
[Brown and Hindmarsh 1989] for an extensive study of preconditioners for reaction-
transport systems.

Second, the SUNDIALS package includes some extra preconditioner modules, for
optional use with the solvers. For parallel environments, each of the SUNDIALS
solvers provides a preconditioner module which generates a band-block-diagonal
(BBD) preconditioner. For serial environments, CVODE and CVODES also supply
a band preconditioner module. These band and BBD preconditioners are described
below. Full details on the usage of these optional modules are given in the respec-
tive user guides — [Hindmarsh and Serban 2004a; 2004b; Hindmarsh et al. 2004;
Hindmarsh and Serban 2004c].

In any case, for any given choice of the approximate Jacobian, it may be best to
consider choices for the preconditioner linear solver that are more appropriate to
the specific problem than those supplied with SUNDIALS.

3.1 Preconditioners for CVODE

Assuming that the CVODE user has chosen one of the stiff system options, recall
from (3) that the Newton matrix for the nonlinear iteration has the form I − γJ ,
where J is the ODE system Jacobian J = ∂f/∂y. Therefore, a typical choice for
the preconditioner matrix P is

P = I − γJ̃ , with J̃ ≈ J .

As noted above, the approximation may be a crude one.
The setup phase for P is generally performed only once every several time steps,

in an attempt to minimize costs. In addition to evaluating P , it may involve
preprocessing operations, such as LU decomposition, suitable for later use in the
solve phase. Within the setup routine, the user can save and reuse the relevant
parts of the approximate Jacobian J̃ , as directed by CVODE (in its call to the user
routine), so as to further reduce costs when the scalar γ has changed since the last
setup call. This option requires the user to manage the storage of the saved data
involved. But this tradeoff of storage for potential savings in computation may
be beneficial if the cost of evaluating J̃ is significant in comparison with the other
operations performed on P .

For serial environments, CVODE supplies a preconditioner called CVBANDPRE,
whose use is optional. This preconditioner computes and solves a banded approxi-
mation P to the Newton matrix, computed with difference quotient approximations.
The user supplies a pair of lower and upper half-bandwidths — ml, mu — that de-

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

18 · Alan C. Hindmarsh et al.

fine the shape of the approximate Jacobian J̃ ; its full bandwidth is ml+mu+1. J̃
is computed using difference quotients, with ml+mu+1 evaluations of f . The true
Jacobian need not be banded, or its true bandwidth may be larger, as long as J̃
approximates J sufficiently well.

Extending this idea to the parallel setting, CVODE also includes a module, called
CVBBDPRE, that generates a band-block-diagonal preconditioner. CVBBDPRE
is designed for PDE-based problems and uses the idea of domain decomposition,
as follows. Suppose that a time-dependent PDE system, with the spatial operators
suitably discretized, yields the ODE system ẏ = f(t, y). Now consider a decom-
position of the (discretized) spatial domain into M non-overlapping subdomains.
This decomposition induces a block form y = (y1, . . . , yM) for the vector y, and
similarly for f . We will use this distribution for the solution with CVODE on M
processors.

The m-th block of f , fm(t, y), depends on both ym and ghost cell data from
other blocks ym′ , typically in a local manner, according to the discretized spa-
tial operators. However, when we build the preconditioner P , we will ignore that
coupling and include only the diagonal blocks ∂fm/∂ym. In addition, it may be
cost-effective to exclude from P some parts of the function f . Thus, for the com-
putation of these blocks, we replace f by a function g ≈ f (and g = f is certainly
allowed). For example, g may be chosen to have a smaller set of ghost cell data than
f . In the CVBBDPRE module, the matrix blocks ∂gm/∂ym are approximated by
band matrices Jm, again exploiting the local spatial coupling, and on processor m
these matrices are computed by a difference quotient scheme. Then the complete
preconditioner is given by

P = diag[P1, . . . , PM] , Pm = Im − γJm .

Linear systems Px = b are then solved by banded LU and backsolve operations
on each processor. The setup phase consists of the evaluation and banded LU
decomposition of Pm, and the solve phase consists of a banded backsolve operation.

In order to minimize costs in the difference quotient scheme, the function g is
supplied by the user in the form of two routines. One routine, called once per P
evaluation, performs inter-processor communication of data needed to evaluate the
gm. The other routine evaluates gm on processor m, assuming that the commu-
nication routine has already been called. The banded structure of the problem is
exploited in two different ways. First, the user supplies a pair of half-bandwidths,
ml and mu, that defines the shape of the matrix Jm. But the user also supplies a
second pair of half-bandwidths, mldq and mudq, for use in the difference quotient
scheme, in which Jm is computed by way of mldq+mudq+2 evaluations of gm. The
values ml and mu may be smaller than mldq and mudq, giving a tradeoff between
lower matrix costs and slower convergence. Thus, for example, a matrix based on
5-point coupling in 2D (mldq = mudq = mesh dimension) might be well approxi-
mated by a tridiagonal matrix (ml = mu = 1). In any case, for the sake of efficiency,
both pairs of half-bandwidths may be less than the true values for ∂gm/∂ym, and
both pairs may depend on m.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers · 19

3.2 Preconditioners for KINSOL and IDA

The KINSOL package includes a module, called KINBBDPRE, that provides a
band-block-diagonal preconditioner for use in parallel environments, analogous to
that of the CVODE module CVBBDPRE. Here the problem to be solved is F (u) =
0, and the preconditioner is constructed by way of a function g ≈ F . Namely, it is
defined as

P = diag[P1, . . . , PM] , Pm ≈ ∂gm/∂um ,

in terms of the blocks of g and u on processor m. Again, Pm is banded and is
computed using difference quotients, with user-supplied half-bandwidths for both
the difference quotient scheme and the retained band matrix.

Likewise, the IDA package, in the parallel setting, includes a band-block-diagonal
preconditioner module, called IDABBDPRE. For the problem F (t, y, ẏ) = 0, the
preconditioner is defined by way of a function G ≈ F . Specifically, the precondi-
tioner is

P = diag[P1, . . . , PM] , Pm ≈ ∂Gm/∂ym + α∂Gm/∂ẏm .

Each block Pm is banded, computed using difference quotients, with user-supplied
half-bandwidths for the difference quotient scheme and the retained matrix.

4. SENSITIVITY ANALYSIS

Many times, models depend on parameters, either through their defining function
— f(t, y) for the ODE in (1), F (t, y, ẏ) for the DAE (10), and F (u) for nonlinear
systems (7) — or through initial conditions in the case of ODEs and DAEs. In
addition to the solution y or u, we often want to quantify how the solution (or some
other output functional that depends on the solution) is influenced by changes in
these model parameters.

Depending on the number of model parameters and the number of functional
outputs, one of two sensitivity methods is more appropriate. The forward sensi-
tivity method is mostly suitable when we need the gradients of many outputs (for
example the entire solution vector) with respect to relatively few parameters. In
this approach, the model is differentiated with respect to each parameter in turn to
yield an additional system of the same size as the original one, the result of which
is the solution sensitivity. The gradient of any output function depending on the
solution can then be directly obtained from these sensitivities by applying the chain
rule of differentiation. The adjoint sensitivity method is more practical than the
forward approach when the number of parameters is large and when we need the
gradients of only few output functionals. In this approach, the solution sensitivities
need not be computed explicitly. Instead, for each output functional of interest,
we form and solve an additional system, adjoint to the original one, the solution
of which can then be used to evaluate the gradient of the output functional with
respect to any set of model parameters.

For each of the basic solvers described in Section 2, extensions that are sensitivity-
enabled are already available (CVODES), or under development (IDAS), or under
consideration depending on the need (KINSOLS). The various algorithmic features
of CVODES and IDAS are documented in [Cao et al. 2003]. A detailed description

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

20 · Alan C. Hindmarsh et al.

of the CVODES software package is presented in [Serban and Hindmarsh 2004],
while full usage description is given in [Hindmarsh and Serban 2004b].

4.1 CVODES

CVODES is an extension of CVODE that, besides solving ODE initial value prob-
lems of the form (1), also provides forward and adjoint sensitivity analysis ca-
pabilities. Here, we assume that the system depends on a vector of parameters,
p = [p1, . . . , pNp

],

ẏ = f(t, y, p), y(t0, p) = y0(p) , (17)

including the case where the initial value vector y0 depends on p, and we consider a
scalar output functional of the form g(t, y, p). In addition to y as a function of t, we
want the total derivative dg/dp = (∂g/∂y)s + ∂g/∂p, where s = dy/dp ∈ RN×Np

is the so-called sensitivity matrix. Each column si = dy/dpi of s satisfies the
sensitivity ODE

ṡi = Jsi +
∂f

∂pi
, si(t0) =

dy0

dpi
, (18)

where J is the system Jacobian defined in (3).

4.1.1 Forward Sensitivity. CVODES can be used to integrate an extended sys-
tem Y = [y, s1, . . . , sNs] forward in time, where [s1, . . . , sNs] are a subset of the
columns of s. CVODES provides the following three choices for the sequence in
which the states and sensitivity variables are advanced in time at each step.

—Simultaneous Corrector: the nonlinear system (2) is solved simultaneously for the
states and all sensitivity variables [Maly and Petzold 1996], using a coefficient
matrix for the Newton update, which is simply the block-diagonal portion of the
Newton matrix.

—Staggered Corrector 1: the correction stages for the sensitivity variables take
place after the states have been corrected and have passed the error test. To
prevent frequent Jacobian updates, the linear sensitivity systems are solved with
a modified Newton iteration [Feehery et al. 1997].

—Staggered Corrector 2: a variant of the previous one, in which the error test for
the sensitivity variables is also staggered, one sensitivity system at a time.

The matrices in the staggered corrector methods and all of the diagonal blocks
in the simultaneous corrector method are identical to the matrix M in (3), and
therefore the linear systems corresponding to the sensitivity equations are solved
using the same preconditioner and/or linear system solver that were specified for
the original ODE problem. The sensitivity variables may be suppressed from the
step size control algorithm, but they are always included in the nonlinear system
convergence test.

The right-hand side of the sensitivity equations may be supplied by a user routine,
or approximated by difference quotients at the user’s option. In the latter case,
CVODES offers both forward and central finite difference approximations. We use
increments that take into account several problem-related features, namely, the
relative ODE error tolerance rtol, the machine unit roundoff U , scale factors p̄

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers · 21

for the problem parameters p, and the weighted root-mean-square norm of the
sensitivity vector si. Using central finite differences as an example, the two terms
Jsi and ∂f/∂pi in the right-hand side of (18) can be evaluated separately:

Jsi ≈ f(t, y + σysi, p)− f(t, y − σysi, p)
2 σy

, (19)

∂f/∂pi ≈ f(t, y, p + σiei)− f(t, y, p− σiei)
2 σi

, (19′)

σi = |p̄i|
√

max(rtol, U) , σy =
1

max(1/σi, ‖si‖WRMS/|p̄i|) ,

simultaneously:

Jsi + ∂f/∂pi ≈ f(t, y + σsi, p + σei)− f(t, y − σsi, p− σei)
2 σ

, (20)

σ = min(σi, σy) ,

or adaptively switching between (19)+(19′) and (20), depending on the relative size
of the estimated finite difference increments σi and σy.

4.1.2 Adjoint Sensitivity. CVODES can also be used to carry out adjoint sensi-
tivity analysis, in which the original system for y is integrated forward, an adjoint
system is then integrated backward, and finally the desired sensitivities are ob-
tained from the backward solution. To be specific about how the adjoint approach
works, we consider the following situation. We assume as before that f and/or y0

involves the parameter vector p and that there is a functional g(t, y, p) for which
we desire the total derivative (dg/dp)|t=tf at the final time tf. We first integrate
the original problem (17) forward from t0 to tf. The next step in the procedure is
to integrate from tf to t0 the adjoint system

λ̇ = −JT λ , λ(tf) =
(

∂g

∂y

)T
∣∣∣∣∣
t=tf

. (21)

When this backward integration is complete, then the desired sensitivity array is
given by

dg

dp

∣∣∣∣
t=tf

= λT (t0)
dy0

dp
+

∫ tf

t0

λT ∂f

∂p
dt +

∂g

∂p

∣∣∣∣
t=tf

. (22)

Other situations, with different forms for the desired sensitivity information, are
covered by different adjoint systems [Cao et al. 2003].

For the efficient evaluation of integrals such as the one in (22), CVODES allows
for special treatment of quadrature equations by excluding them from the nonlin-
ear system solution, while allowing for inclusion or exclusion of the corresponding
variables from the step size control algorithm.

During the backward integration, we regenerate y(t) values, as needed, in evalu-
ating the right-hand side of the adjoint system. CVODES settles for a compromise
between storage space and execution time by implementing a checkpoint scheme
combined with piecewise cubic Hermite interpolation: at the cost of, at most, one
additional forward integration, this approach offers the best possible estimate of

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

22 · Alan C. Hindmarsh et al.

memory requirements for adjoint sensitivity analysis. Finally, we note that the
adjoint sensitivity module in CVODES provides the infrastructure to integrate
backwards in time any ODE terminal-value problem dependent on the solution
of the IVP (17), not just adjoint systems such as (21). In particular, for ODE sys-
tems arising from semi-discretization of time-dependent PDEs, this feature allows
for integration of either the discretized adjoint PDE system or the adjoint of the
discretized PDE.

4.2 IDAS

IDAS, an extension to IDA with sensitivity analysis capabilities, is currently under
development and will be soon released as part of SUNDIALS.

Forward sensitivity analysis for systems of DAEs system is similar to that for
ODEs. Writing the system as F (t, y, ẏ, p) = 0 and defining s = dy/dp as before, we
obtain DAEs for the individual sensitivity vectors,

∂F

∂y
si +

∂F

∂ẏ
ṡi +

∂F

∂pi
= 0 , si(t0) = dy0/dpi , ṡi(t0) = dẏ0/dpi . (23)

IDAS implements the same three options for correction of the sensitivity variables
as CVODES. For the simultaneous corrector approach, the coefficient matrix for
the Newton update of the extended system (10)+(23) is again approximated by its
diagonal blocks, each of them identical to the matrix J of (14). For the generation of
the residuals of the sensitivity equations, IDAS provides several difference quotient
approximations equivalent to those described in Section 4.1.

The use of adjoint DAE systems for adjoint sensitivity analysis is also similar to
the ODE case. As an example, if λ satisfies

d

dt

[(
∂F

∂ẏ

)T

λ

]
−

(
∂F

∂y

)T

λ = −
(

∂g

∂y

)T

, (24)

with appropriate conditions at tf, then the total derivative of G(p) =
∫ tf

t0
g(t, y, p)dt

is obtained as

dG

dp
=

∫ tf

t0

(
∂g

∂p
− λT ∂F

∂p

)
dt−

(
λT ∂F

∂ẏ
s

)∣∣∣∣
tf

t0

.

However, unlike the ODE case, homogeneous final conditions for the adjoint vari-
ables may not always be enough (such is the case for Hessenberg index-2 DAEs).
Moreover, for implicit ODEs and index-1 DAEs the adjoint system may not be
stable to integration from the right, even if the original system (10) is stable from
the left. To circumvent this problem for such systems, IDAS integrates backwards
in time the so-called augmented adjoint DAE system defined as

˙̄λ−
(

∂F

∂y

)T

λ = −
(

∂g

∂y

)T

λ̄−
(

∂F

∂ẏ

)T

λ = 0 ,

(25)

which can be shown to preserve stability [Cao et al. 2003].
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers · 23

IDAS employs a combination of checkpointing with piecewise cubic Hermite inter-
polation for generation of the solution y(t) needed during the backward integration
phase in (24) or (25). As in CVODES, for efficiency, pure quadrature equations
are treated separately in that their correction phase does not include a nonlinear
system solution. At the user’s discretion, the quadrature variables can be included
or excluded from the step size control algorithm.

4.3 KINSOLS

In the case of a nonlinear algebraic system, the sensitivity equations are consider-
ably simpler. If the system is written F (u, p) = 0 and we define s = du/dp, then
for the individual sensitivity vectors si,

Jsi = −∂F

∂pi
, (26)

where J = ∂F/∂u.
Forward sensitivity analysis for nonlinear systems thus reduces to solving a num-

ber of linear systems equal to the number of model parameters. The Jacobian-vector
product and right-hand side of (26) can be provided by the user or evaluated with
directional derivatives. In the latter case we approximate Jsi with the formulas
presented in Section 2.2 and ∂F/∂pi with:

∂F

∂pi
≈ F (u, p + σiei)− F (u, p)

σi
,

where σi = |p̄i|
√

U .
When the dimension Np of the problem parameters p is large, the adjoint sensi-

tivity is again a much more efficient method for computing the total derivative of
some functional g(u, p). If λ is the solution of the adjoint system

JT λ =
(

∂g

∂u

)T

,

then the desired gradient becomes dg/dp = −λT (∂F/∂p) + (∂g/∂p).

5. CODE ORGANIZATION

The writing of CVODE from the Fortran 77 solvers VODE and VODPK initiated
a complete redesign and reorganization of the existing LLNL solver coding. The
features of the design of CVODE include the following:

—Memory allocation is heavily used.
—The linear solver modules are separate from the core integrator, so that the latter

is independent of the method for solving linear systems.
—Each linear solver module contains a generic solver, which is independent of the

ODE context, together with an interface to the CVODE core integrator module.
—The vector operations (linear sums, dot products, norms, etc.) on N -vectors are

isolated in a separate NVECTOR module.

The process of modularization has continued with the development of CVODE,
KINSOL, and IDA. The SUNDIALS distribution now contains a number of common

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

24 · Alan C. Hindmarsh et al.

CVDIAG CVDENSE CVBAND CVSPGMR IDADENSE IDABAND IDASPGMR

IDA KINSOL

KINSPGMR

CVODE CVODES

SUNDIALS

DENSE SPGMR
ITERATIVE

BAND NVECTOR

NVECTOR_SERIAL NVECTOR_PARALLEL

Fig. 1. Overall structure of the SUNDIALS package.

modules in a shared directory. Additionally, compilation of SUNDIALS is now
independent of any prior specification of a particular NVECTOR implementation,
facilitating the use of binary libraries. The current NVECTOR design also allows
the use of multiple implementations within the same code, as may be required to
meet user needs.

Figure 1 shows the overall structure of SUNDIALS, with the various separate
modules. The evolution of SUNDIALS has been directed toward keeping the entire
set of solvers in mind. Thus, CVODE, KINSOL, and IDA share much in their
organization and have a number of common modules. The separation of the lin-
ear solvers from the core integrators allows for easy addition of linear solvers not
currently included in SUNDIALS. At the bottom level is the NVECTOR module,
providing key vector operations such as creation, duplication, destruction, summa-
tion, and dot products on potentially distributed data vectors. Serial and parallel
NVECTOR implementations are included with SUNDIALS, but a user can sub-
stitute his/her own implementation as useful. Two small modules defining several
data types and elementary mathematical operations are also included.

A number of necessary and optional user-supplied routines for the solvers in
SUNDIALS are not shown in Figure 1. The user must provide a routine for the
evaluation of f (CVODE) or F (KINSOL and IDA). The user-provided routines
may include, depending on the options chosen, routines for Jacobian evaluation
(direct cases) or Jacobian-vector products (Krylov case), and routines for the setup
and solution of Krylov preconditioners.

5.1 Shared Modules - Linear Solvers

As can be seen in Figure 1, three linear solver packages are currently included with
SUNDIALS: a direct dense matrix solver (DENSE); a direct band solver (BAND);
and an iterative Krylov solver (SPGMR). These are stand-alone packages in their
own right.

The shared linear solvers are accessed from SUNDIALS via solver-specific wrap-
pers. Thus, SPGMR is accessed via CVSPGMR, IDASPGMR, and KINSPGMR,
for CVODE (and CVODES), IDA, and KINSOL, respectively. For the DENSE
solver, the wrappers are CVDENSE and IDADENSE for CVODE/CVODES and
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers · 25

IDA, respectively. Similar wrappers for BAND are CVBAND and IDABAND.
Within each solver, each linear solver module consists primarily of the user-

callable function that specifies that linear solver, and four or five wrapper routines.
The wrappers conform to a fixed set of specifications, enabling the central solver
routines to be independent of the linear system method used. Specifically, for each
such module, there are four wrappers — for initialization, Jacobian/precondioner
matrix setup, linear system solution, and memory freeing. The IDA modules have
a fifth wrapper, for linear solver performance monitoring. These wrapper specifi-
cations are fully described in the user documentation for each solver. By following
those, and using any of the existing modules as a model, the user can add a linear
solver module to the package, if appropriate.

5.2 Shared Modules - NVECTOR

A generic NVECTOR implementation is used within SUNDIALS to operate on vec-
tors. This generic implementation defines an NVECTOR structure which consists
of an implementation-specific content and a set of abstract vector operations. The
NVECTOR module also provides a set of wrappers for accessing the actual vector
operations of the implementation under which an NVECTOR was created. Because
details of vector operations are thus encapsulated within each specific NVECTOR
implementation, the solvers in SUNDIALS are now independent of a specific imple-
mentation. This allows the solvers to be precompiled as binary libraries and allows
more than one NVECTOR implementation to be used within a single program.

A particular NVECTOR implementation, such as the serial and parallel imple-
mentations included with SUNDIALS or a user-provided implementation, must
provide certain functionalities. At a minimum, each implementation must pro-
vide functions to create a new vector, a function to destroy such vectors, and the
definitions of vector operations required by the SUNDIALS solvers, including, for
example, duplication, summation, element-by-element inversion, and dot product.

If neither the serial nor parallel NVECTOR implementation provided within
SUNDIALS is suitable, the user can provide one or more NVECTOR implementa-
tions. For example, it might (and has been) more practical to substitute a more
complex data structure in a parallel implementation.

For complete details, see the user documentation for any of the solvers in SUN-
DIALS [Hindmarsh and Serban 2004a; 2004b; 2004c; Hindmarsh et al. 2004].

5.3 User Interface Design

When CVODE was initially developed from VODE and VODPK, its user interface
was completely redesigned, and the same design principles were adopted when the
other solvers were added to the suite. Further changes in the interface design
were made more recently. Unlike the typical Fortran solver, where the interface
consists of one callable routine with many arguments, the user interface to each
of the SUNDIALS solvers involves many callable routines, each with only a few
arguments. The various routines specify the various aspects of the problem to be
solved and of the solution method to be used, or retrieve information about the
solution. For each solver, there are separate (required) calls that initialize and
allocate memory for the problem solver and for the linear system solver it will
use. Then there are optional calls to specify various optional inputs (ranging from

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

26 · Alan C. Hindmarsh et al.

scalars like maximum method order to the user-supplied Jacobian routine), and
optional calls to obtain optional outputs (mostly performance statistics). Finally,
there is a call to restart the solver, when a new problem of the same size is to be
solved, but possibly with different initial conditions or a different right-hand side
function. The interface design is intended to be fairly simple for the casual user,
but also suitably rich and flexible for the more expert user.

6. USAGE

The new design and organization of SUNDIALS as described in Section 5 makes the
codes flexible and easy to use. This versatility is due primarily to the control that
the user has over the modules that comprise SUNDIALS: the specification of vec-
tors; the linear solver and preconditioner methods; the basic solvers; and sensitivity
analysis. Default routines are provided for computing Jacobian-vector approxima-
tions, or the right-hand side of the forward sensitivity systems, for example. But
for these routines and other basic operations, SUNDIALS allows the user to pro-
vide their own variants that may be better suited to their problem-solving needs.
Additionally, SUNDIALS provides the user with a fine level of control over vari-
ous algorithmic parameters, heuristic values, and data structure pointers contained
within the codes. Finally, SUNDIALS provides optional routines for extracting the
solution, solver statistics, and other useful information from the codes.

A general approach for using SUNDIALS is given below. The outline conveys the
basic elements of what is needed to properly specify and solve a problem, the order
in which certain tasks must be done, the opportunities for providing user-supplied
routines or input values, and so on. Complete details and additional examples are
in the documentation that accompanies each solver in SUNDIALS.

(1) SUNDIALS contains header files that define various constants, enumerations,
macros, data types, and function prototypes. At a minimum, the user must in-
clude header files that declare: the SUNDIALS data types for real, integer, and
boolean variables; the NVECTOR implementation to be used; and the solver
functions needed to set up and initialize the problem, compute, and extract
the solution. Typically, additional header files will be specified to declare the
preconditioning and/or linear solver methods to be used.

(2) The user must provide a function for evaluating the equations to be solved.
Optionally, a user-defined data structure can be created and passed to this
function.

(3) To completely specify the problem, the user must provide whatever initial
guesses and/or initial values are needed, specify solution error tolerances, and
so on.

(4) The next step is to call a routine for initializing a block of memory that will be
used in solving the problem. The memory block is created with certain default
values for the solver, such as the use of standard output for writing warning and
error messages, or NULL as a default value for the pointer to the user-specified
data structure to be passed in evaluating the user’s function.

(5) At this stage, the default values in the solver memory block can be changed if
so desired. Choices and default values are given in Table I for each of the basic
solvers and are discussed further below.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers · 27

(6) After checking the initialized memory block for errors in the default or optional
input values, the user now calls the appropriate routine to perform any required
memory allocation.

(7) Typically, preconditioning and/or linear solver methods are needed for solving
the linear systems that may arise. These methods can now be attached to
the block of memory allocated for the solver. Likewise, if rootfinding is to
be done (by CVODE or CVODES) along with the integration, then the user
specifications for that task are also attached at this point.

(8) The appropriate routine is called to solve the problem according to the toler-
ances and other settings that have been specified.

(9) To extract the solution, solver statistics, and other information, optional output
extraction routines can be called. A listing of the optional outputs for the basic
solvers is given in Table II.

(10) To end the process, the user must make the appropriate calls to free mem-
ory that was allocated in the previous steps. Otherwise, if applicable, a re-
initialization routine can be called for solving additional problems.

In order to carry out sensitivity analysis, the above outline needs to be modified
at several steps. For forward sensitivities, Step 1 requires that the appropriate
header file for forward sensitivity analysis be used in place of the header file for
the basic solver. At Step 2, the user must create an array of real parameters upon
which the solution depends and attach a pointer to this array to the user-defined
data structure that is passed to the user’s function. Also, the user must specify the
number of sensitivities to be computed and provide an array that indicates which
solution sensitivities are to be computed. Step 6 requires that the user call the
memory allocation routine for the forward sensitivity version of the basic solver.
As the solution and forward sensitivities are computed, these results and various
solver statistics can be extracted as part of Steps 8–9. Finally, memory space
that has been allocated previously must be freed at Step 10. For complete details
on performing forward or adjoint sensitivity analysis for CVODES, the reader is
referred to [Serban and Hindmarsh 2004].

If using the parallel NVECTOR module in SUNDIALS, the MPI header file must
be specified in Step 1 so that in Step 3 the MPI communicator can be initialized, the
set of active processors can be established, and the global and local vector lengths
can be set. In Step 10, memory allocated for MPI must be freed.

6.1 Optional inputs and outputs

Within SUNDIALS, an attempt is made to set reasonable defaults for the various
methods, heuristic parameters, and pointers used in the codes. A key feature of
SUNDIALS is that it provides a collection of optional input and output routines
so that default settings can be changed, or various solver statistics and other infor-
mation can be extracted. These “set” and “get” routines are available for each of
the solvers, as noted, as well as for the linear solver and preconditioning methods
that support them.

Basic Solvers. Table I lists the various optional inputs that the user can set to
control the basic solvers within SUNDIALS. Under each solver column we give the

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

28 · Alan C. Hindmarsh et al.

Table I. Optional inputs for the basic solvers in SUNDIALS. The value of unit roundoff for
the machine is denoted by U , and “est.” indicates that a quantity is automatically estimated
by the code.

Optional input CVODE IDA KINSOL

Pointer to the user-defined data NULL NULL NULL
Pointer to an error file NULL NULL NULL
Maximum order for BDF method 5 5 -
Maximum order for Adams method 12 - -
Maximum number of internal steps before tout 500 500 -
Maximum number of warnings for h < U 10 - -
Flag to activate stability limit detection FALSE - -
Initial step size est. est. -
Minimum absolute step size 0.0 - -
Maximum absolute step size ∞ ∞ -
Value of tstop - ∞ -
Maximum number of Newton iterations 3 4 200
Maximum number of convergence failures 10 10 -
Maximum number of error test failures 7 10 -
Coefficient in the nonlinear convergence test 0.1 0.33 -
Flag to exclude algebraic variables from error test - FALSE -
Differential-algebraic identification vector - NULL -
Vector with additional constraints - NULL NULL
Flag to skip initial linear solver setup call - - FALSE
Maximum number of prec. solves without setup - - 10
Flag for selection of η computation - - choice 1
Constant η value - - 0.1
Parameters α and γ in η choice 2 - - 2.0,0.9
Flag to control minimum value for ε - - FALSE
Maximum length of Newton step - - est.
Relative error in computing F (u) - - U

Stopping tolerance on residual - - U1/3

Stopping tolerance on max. scaled step - - U2/3

default value for the respective input. Inputs marked with a “-” are not applicable
to that particular solver. Table II lists the various optional outputs that the user
can get to monitor solver performance. Optional outputs available for a solver are
marked with a “X” and those not available are marked by a “-”.

Sensitivity Analysis. Each sensitivity solver (CVODES and IDAS) offers the com-
plete list of optional “set” and “get” routines as the corresponding basic solver
(CVODE and IDA, respectively). In addition, the user has control over various in-
puts that affect sensitivity calculations. The following are examples of options that
can be set by the user with the default given in parentheses: a user-supplied routine
to compute sensitivity ODEs or DAE sensitivity residuals (CVODES or IDAS dif-
ference quotient approximation); a pointer to user data that will be passed to this
user-supplied ODE or DAE sensitivity routine (NULL); a pointer to the sensitivity
relative error tolerance scalar (same value as for state variables); and a boolean
flag indicating whether the sensitivity variables are included in the error control
mechanism (FALSE). For more options and details, see [Serban and Hindmarsh
2004; Hindmarsh and Serban 2004b].

Linear Solvers and Preconditioners. For any of the linear solvers, the user can set
optional inputs so that a user-supplied routine providing Jacobian-related informa-
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers · 29

Table II. Optional outputs for the basic solvers in SUNDIALS.

Optional output CVODE IDA KINSOL

Size of workspace allocated by the solver X X X
Cumulative number of internal steps taken X X -
Number of calls to the user’s function X X X
Number of calls to the linear solver’s setup routine X X -
Number of local error test failures that have occurred X X -
Number of nonlinear solver iterations X X X
Number of nonlinear convergence failures X X -
Order used during the last step X X -
Order to be attempted on the next step X X -
Order reductions due to stability limit detection X - -
Actual initial step size used X X -
Step size used for the last step X X -
Step size to be attempted on the next step X X -
Current internal time reached by the solver X X -
Vector containing the error weights for state variables X X -
Vector containing the estimated local errors X - -
Number of backtrack operations during linesearch - X X
Number of times the β condition could not be met - - X
Scaled norm at a given iteration - - X
Last step length in the global strategy routine - - X
Information on roots found X - -

tion is used instead of the default difference quotient routine. Also, a pointer can
be set so that user data is passed each time this user-supplied routine is called. In
addition, for the SPGMR case, the following can be optionally changed from their
default values (provided in parentheses): a classical Gram-Schmidt orthogonaliza-
tion (modified Gram-Schmidt), the factor by which the tolerance on the nonlinear
iteration is multiplied to get a tolerance on the linear iteration (0.05); the precon-
ditioner setup routine (NULL); the preconditioner solver routine (NULL); and a
pointer to the user preconditioner data (NULL).

The optional outputs for any of the linear solvers are: the amount of integer
and real workspace used; the number of calls made to the user-supplied Jacobian
evaluation routine; and the number of calls to the user’s function within the default
difference quotient routine. In addition, for the SPGMR case the user can obtain
the number of preconditioner evaluations, the number of calls made to the precon-
ditioner solve routine, the number of linear iterations, and the number of linear
convergence failures.

For the band-block-diagonal preconditioner, the optional outputs are: the amount
of integer workspace used; the amount of real workspace used; and the number of
calls to the local function that approximates the user’s function.

6.2 Fortran Usage

Some support is available for using Fortran 77 and Fortran 90 applications with
SUNDIALS. In particular, a Fortran/C interface package is provided with CVODE
and KINSOL. Each package is a collection of C header files and functions that
provide interfaces from user Fortran routines to solver C routines, and the reverse.
These enable the user to write a main program and all user-supplied routines in
Fortran, and then use either CVODE or KINSOL to solve the problem. This mixed-

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

30 · Alan C. Hindmarsh et al.

language capability entails some compromises in portability, such as requiring fixed
names for the user-supplied routines, but the restrictions are minor. For complete
details, see the CVODE and KINSOL user documentation ([Hindmarsh and Serban
2004a; Hindmarsh et al. 2004]).

7. AVAILABILITY

SUNDIALS and each of its individual solvers have been released under BSD open-
source licenses. Sources for the entire suite or separately for each of CVODE,
CVODES, KINSOL, and IDA are available from the LLNL/CASC web site at

www.llnl.gov/CASC/sundials,
or from the DOE ACTS software collection at

acts.nersc.gov/sundials/main.html.
Both serial and parallel example applications utilizing the solvers are contained in
these sources.

8. CONCLUSIONS

The time integrators and nonlinear solvers within SUNDIALS have been developed
to take advantage of the long history of research and development of such codes at
LLNL. The codes feature state-of-the-art technology for BDF time integration as
well as for inexact Newton-Krylov methods. The design philosophy of providing
clear interfaces to the user and allowing the user to supply their own data structures
makes the solvers reasonably easy to add into existing simulation codes. As a result,
these solvers have been used in numerous applications.

In particular, CVODE has been used to solve 3-dimensional radiation diffusion
problems on up to 5,800 processors of the ASCI Red machine and verifying the
scalability of a fully implicit approach for these problems [Brown and Woodward
2001]. The same code using a preliminary sensitivity version of CVODE was further
used to examine behaviors of solution sensitivities to parameters that characterize
material opacities for these diffusion problems [Lee et al. 2003; Lee et al. 2000].
CVODE is also being used in a 3-dimensional tokamak turbulence model within
LLNL’s Magnetic Fusion Energy Division to solve fusion energy simulation prob-
lems with approximately 1.1 million unknowns on 60 processors [Rognlien et al.
2002]. KINSOL is being applied within LLNL to solve a nonlinear Richards’ equa-
tion model for pressures in variably saturated porous media flows. Fully scalable
solution performance of this code has been obtained on up to 225 processors of
ASCI Blue [Jones and Woodward 2001; Woodward 1998]. The same code using a
preliminary sensitivity version was used to quantify uncertainty due to variations in
relative permeability input parameters within these groundwater problems [Wood-
ward et al. 2002]. IDA has been used in a cloud and aerosol microphysics model at
LLNL to study cloud formation processes and to study model parameter sensitivity.
CVODE, CVODES, KINSOL, and IDA, with multigrid preconditioners, are being
used to solve 3D neutral particle transport problems within LLNL

Although the SUNDIALS codes have proven to be versatile and robust, further
development of the suite is underway. In particular, a sensitivity version of IDA,
called IDAS, is currently under development. This code will have forward and
adjoint sensitivity capabilities similar to CVODES. Further nonlinear solver capa-
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers · 31

bilities are being considered for extensions to KINSOL, including a trust region
globalization method as well as other strategies for choosing finite differencing pa-
rameters. In addition, a Picard iteration package and a BiCGStab Krylov solver
module are also planned for addition to SUNDIALS.

ACKNOWLEDGMENTS

The authors wish to acknowledge the contributions of Scott Cohen in the devel-
opment of CVODE, Allan Taylor in the development of KINSOL and IDA, and
Homer Walker for implementation of the Eisenstat and Walker forcing term op-
tions in KINSOL.

REFERENCES

Brenan, K. E., Campbell, S. L., and Petzold, L. R. 1996. Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations. SIAM, Philadelphia, Pa.

Brown, P. N. 1987. A local convergence theory for combined inexact-Newton/finite difference
projection methods. SIAM J. Numer. Anal. 24, 2, 407–434.

Brown, P. N., Byrne, G. D., and Hindmarsh, A. C. 1989. VODE, a variable-coefficient ODE
solver. SIAM J. Sci. Stat. Comput. 10, 1038–1051.

Brown, P. N. and Hindmarsh, A. C. 1989. Reduced storage matrix methods in stiff ODE
systems. J. Appl. Math. & Comp. 31, 49–91.

Brown, P. N., Hindmarsh, A. C., and Petzold, L. R. 1994. Using Krylov methods in the
solution of large-scale differential-algebraic systems. SIAM J. Sci. Comput. 15, 1467–1488.

Brown, P. N., Hindmarsh, A. C., and Petzold, L. R. 1998. Consistent initial condition calcu-
lation for differential-algebraic systems. SIAM J. Sci. Comput. 19, 1495–1512.

Brown, P. N. and Saad, Y. 1990. Hybrid Krylov methods for nonlinear systems of equations.
SIAM J. Sci. Stat. Comput. 11, 450–481.

Brown, P. N. and Woodward, C. S. 2001. Preconditioning strategies for fully implicit radiation
diffusion with material-energy transfer. SIAM J. Sci. Comput. 23, 2, 499–516.

Byrne, G. D. 1992. Pragmatic experiments with Krylov methods in the stiff ODE setting. In
Computational Ordinary Differential Equations, J. Cash and I. Gladwell, Eds. Oxford Univer-
sity Press, Oxford, 323–356.

Byrne, G. D. and Hindmarsh, A. C. 1975. A polyalgorithm for the numerical solution of
ordinary differential equations. ACM Trans. Math. Softw. 1, 71–96.

Byrne, G. D. and Hindmarsh, A. C. 1998. User documentation for PVODE, an ODE solver for
parallel computers. Tech. Rep. UCRL-ID-130884, LLNL.

Byrne, G. D. and Hindmarsh, A. C. 1999. PVODE, an ODE solver for parallel computers. Intl.
J. High Perf. Comput. Apps. 13(4), 254–365.

Cao, Y., Li, S., Petzold, L. R., and Serban, R. 2003. Adjoint sensitivity analysis for differential-
algebraic equations: The adjoint DAE system and its numerical solution. SIAM J. Sci. Com-
put. 24(3), 1076–1089.

Cohen, S. D. and Hindmarsh, A. C. 1994. CVODE user guide. Tech. Rep. UCRL-MA-118618,
LLNL.

Cohen, S. D. and Hindmarsh, A. C. 1996. CVODE, a stiff/nonstiff ODE solver in C. Computers
in Physics 10(2), 138–143.

Curtis, A. R., Powell, M. J. D., and Reid, J. K. 1974. On the estimation of sparse Jacobian
matrices. J. Inst. Math. Applic. 13, 117–119.

Dembo, R. S., Eisenstat, S. C., and Steihaug, T. 1982. Inexact Newton methods. SIAM J.
Numer. Anal. 19, 400–408.

Dennis, J. E. and Schnabel, R. B. 1996. Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. SIAM, Philadelphia, Pa.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

32 · Alan C. Hindmarsh et al.

Eisenstat, S. C. and Walker, H. F. 1996. Choosing the forcing terms in an inexact Newton
method. SIAM J. Sci. Comput. 17, 16–32.

Feehery, W. F., Tolsma, J. E., and Barton, P. I. 1997. Efficient sensitivity analysis of large-
scale differential-algebraic systems. Appl. Num. Math. 25(1), 41–54.

Hairer, E. and Wanner, G. 1991. Solving Ordinary Differential Equations II, Stiff and
Differential-Algebraic Problems. Springer-Verlag, Berlin.

Hiebert, K. L. and Shampine, L. F. 1980. Implicitly Defined Output Points for Solutions of
ODEs. Tech. Rep. SAND80-0180, Sandia National Laboratories.

Hindmarsh, A. C. 1992. Detecting stability barriers in BDF solvers. In Computational Ordinary
Differential Equations, J. Cash and I. Gladwell, Eds. Oxford University Press, Oxford, 87–96.

Hindmarsh, A. C. 1995. Avoiding BDF stability barriers in the MOL solution of advection-
dominated problems. Appl. Num. Math. 17, 311–318.

Hindmarsh, A. C. 2000. The PVODE and IDA algorithms. Tech. Rep. UCRL-ID-141558, LLNL.

Hindmarsh, A. C. and Serban, R. 2004a. User documentation for CVODE v2.2.0. Tech. Rep.
(in preparation), LLNL.

Hindmarsh, A. C. and Serban, R. 2004b. User documentation for CVODES v2.1.0. Tech. Rep.
(in preparation), LLNL.

Hindmarsh, A. C. and Serban, R. 2004c. User documentation for IDA v2.2.0. Tech. Rep. (in
preparation), LLNL.

Hindmarsh, A. C., Serban, R., and Woodward, C. 2004. User documentation for KINSOL
v2.2.0. Tech. Rep. (in preparation), LLNL.

Jackson, K. R. and Sacks-Davis, R. 1980. An alternative implementation of variable step-size
multistep formulas for stiff ODEs. ACM Trans. Math. Softw. 6, 295–318.

Jones, J. E. and Woodward, C. S. 2001. Newton-Krylov-multigrid solvers for large-scale, highly
heterogeneous, variably saturated flow problems. Advances in Water Resources 24, 763–774.

Kelley, C. T. 1995. Iterative Methods for Solving Linear and Nonlinear Equations. SIAM,
Philadelphia, Pa.

Lee, S. L., Hindmarsh, A. C., and Brown, P. N. 2000. User documentation for SensPVODE,
a variant of PVODE for sensitivity analysis. Tech. Rep. UCRL-MA-140211, LLNL.

Lee, S. L., Woodward, C. S., and Graziani, F. 2003. Analyzing radiation diffusion using
time-dependent sensitivity-based techniques. J. Comp. Phys. 192(1), 211–230.

Maly, T. and Petzold, L. R. 1996. Numerical methods and software for sensitivity analysis of
differential-algebraic systems. Appl. Num. Math. 20, 57–79.

Radhakrishnan, K. and Hindmarsh, A. C. 1993. Description and use of LSODE, the Livermore
solver for ordinary differential equations. Tech. Rep. UCRL-ID-113855, LLNL.

Rognlien, T. D., Xu, X. Q., and Hindmarsh, A. C. 2002. Application of parallel implicit
methods to edge-plasma numerical simulations. J. Comp. Phys. 175, 249–268.

Saad, Y. and Schultz, M. H. 1986. GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comp. 7, 856–869.

Serban, R. and Hindmarsh, A. C. 2004. CVODES, an ODE solver with sensitivity analysis
capabilities. ACM Trans. Math. Softw. (submitted).

Woodward, C. S. 1998. A Newton-Krylov-multigrid solver for variably saturated flow prob-
lems. In Proc. of the Twelfth International Conference on Computational Methods in Water
Resources. Vol. 2. Computational Mechanics Publications, Southampton, 609–616.

Woodward, C. S., Grant, K. E., and Maxwell, R. 2002. Applications of sensitivity analysis
to uncertainty quantification for variably saturated flow. In Computational Methods in Water
Resources, S. M. Hassanizadeh, R. J. Schotting, W. G. Gray, and G. F. Pinder, Eds. Elsevier,
Amsterdam, 73–80.

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.

U
ni

ve
rs

it
y

of
 C

al
if

or
ni

a
L

aw
re

nc
e

L
iv

er
m

or
e

N
at

io
na

l L
ab

or
at

or
y

Te
ch

ni
ca

l I
nf

or
m

at
io

n
D

ep
ar

tm
en

t
L

iv
er

m
or

e,
 C

A
 9

45
51

