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1 Introduction

We are concerned with the finite element solution of Maxwell’s equations on 3D unstructured grids.
While there are a great variety of formulations in use, the Galerkin procedure applied to the curl-curl
Helmholtz equation (or the vector wave equation in the time domain) is the most popular. For this
equation, the choice of basis functions is of key importance, and there are numerous advantages to
Nedelec’s curl-conforming (often called called H(curl), edge, or vector) bases. These basis functions
allow for a jump discontinuity of electric field across material discontinuities, they are convenient
for enforcing the essential PEC boundary conditions and they permit solutions that are free of spu-
rious irrotational modes. These bases were introduced by Nedelec [1], Bossavit [2], Crowley [3]
and others, and have successfully been used for multifarious applications including RCS, waveg-
uides, antennas, and optics. Recently Hiptmair [4] has advocated the connection between these curl-
conforming bases and differential forms, and this connection is followed here. Curl-conforming
basis functions are appropriate for discretization of physical quantities that behave like 1-forms,
such as the electric field or the magnetic vector potential.

While the abstract mathematical work such as presented in ([1],[4]) is valid for arbitrary order basis
functions, most engineering applications to date have been restricted to first or second order basis
functions (following [1] we refer to a basis containing terms of up to order n, as an n′th order
basis). This is due to the implicitly defined nature of the basis presented in these mathematical
works. Recently, explicit formulae for arbitrary order interpolatory bases were developed [5]. This
explicit formulation has spurred the development of many high-order simulation codes. High-order
methods can yield extremely accurate and efficient results for certain problems with smoothly curved
boundaries. In simple terms, these bases are generated by multiplying the lowest order 1-form basis
functions by products of one-dimensional Silvester-Lagrange polynomials. These bases functions
are explicit and easily computed, but it is not clear that they are optimal for high-order interpolation.

It is well known that a given function can be approximated to arbitrary accuracy by a polynomial;
this is the essence of the Weierstrass Approximation Theorem. However, this theorem does not say
that arbitrary accuracy can be achieved by a polynomial with uniformly spaced interpolation points.
The inability of uniformly spaced interpolatory polynomials to approximate certain functions is
often referred to as the Runge phenomenon. While this phenomenon is usually discussed in the
context of interpolation of one-dimensional scalar functions, in the next section we demonstrate the
same behavior for 1-form basis functions of the type presented in [5]. We also present a solution to
this problem, which is to use non-uniformly spaced interpolatory polynomials such as Chebyshev or
Gauss-Lobatto polynomials in the construction of 1-form basis functions. It is in this sense that our
basis functions are generalized; arbitrary polynomials may be used to construct the 1-form bases,
and our procedure reduces to that presented in [5] when Silvester-Lagrange polynomials are used.

In addition, the approach presented here is different from that given in [5] in that the bases are
defined on a reference element and then later transformed to an actual distorted element using the
Jacobian. This approach yields a more efficient and elegant computer implementation; it does not
matter how complex the bases are as they only need to be computed once instead of over and over
again for every element. The transformations are based on the properties of differential forms [4].
The distinct rules for the correct transformation of the interpolation vectors, the bases themselves,
and the curl of the bases is presented in the next section. In this abstract only hexahedral basis
functions are presented.



2 Generalized Construction of 1-form Bases on the Hexahedron

Following [1] an appropriate finite element space for 1-forms on a reference hexahedron is

W 1,p = {~u;ux ∈ Qp−1,p,p, uy ∈ Qp,p−1,p, uz ∈ Qp,p,p−1} (1)

where Qa,b,c denotes the polynomial space in three variables (x, y, z) whose maximum degree is
a in x, b in y and c in z. While this is not the starting point of the bases presented in [5], they
can be derived from (1) by choosing Qa,b,c to be products of 1D Silvester and Shifted-Silvester
polynomials. However other polynomials, perhaps with non-uniform interpolation points, can also
be used to construct the space given by (1). One approach for quantifying the efficacy of alternative
interpolatory polynomials is to examine the Lebesgue constant of the resulting basis.

In approximation theory, the Lebesgue constant is a well know measure of the “performance”of an
interpolatory basis. To be more specific, suppose we have an arbitrary function f and an approxi-
mation to this function of order p denoted as f̃p. The approximating function f̃p is constructed by
means of an interpolatory basis expansion. We define the absolute error of the function f and its
interpolant f̃p for some well defined norm as:

∆f = |f − f̃p| (2)

Then for stability of the approximation method we require:

lim
p→∞

∆f = 0 (3)

When the stability requirement of (3) is not met, we observe what is commonly referred to as the
Runge phenomenon, i.e the error of our approximation can increase as the order of the approxima-
tion increases. It is interesting to note that the stability of the approximation is based solely on the
choice of interpolation points. For an arbitrary interpolating polynomial of order p defined over the
set of interpolation points X = {x1, x2, . . . , xp+1}, we have the following bound:

|f − f̃p| ≤ (1 + Λp(X))|f − f̃
p
best| (4)

where the Lebesgue constant is defined as:

Λp(X) = max
x∈[−1,1]

p+1∑

i=1

|Lp
i (x;X)| (5)

For Silvester-Lagrange polynomials the Lebesgue constant grows quite rapidly as a function of p,
hence the upper bound on the approximation also grows rapidly. Choosing sets of interpolations
points X that minimize the Lebesgue constant over the domain [−1, 1] has been the focus of many
years of research in approximation theory. For example, Chebyshev points or Gauss-Lobatto points
can be used to construct nearly optimal interpolatory polynomials. In Figure 1 we compare the
Lebesgue constants for 3D 1-form basis functions defined on a reference hexahedron constructed
using the approach from [5] and a new approach using interpolatory polynomials defined by the ex-
tended set of zeros of the Chebyshev polynomials. In addition, we compare the approximation error
for a specific function (eq. 6). Figure 1 indicates that for large p the use of non-uniformly spaced
interpolation points can reduce the worst-case approximation error by several orders of magnitude.
Also note that the approximation error for uniformly spaced points diverges to infinity while error
for non-uniformly spaced points converges to zero. To our knowledge, this is the first time Lebesgue
constants have been computed for 1-form basis functions.

As a specific example to help visualize the approximation error we choose p = 6 and compare the
Silvester-Lagrange approach from [5] to a new approach using extended Chebyshev polynomials.
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Figure 1: Lebesgue constant vs. p for 3D 1-form basis (left) and interpolation error vs. p for eq. 6
(right)

In both cases the polynomials are of the Nedelec form given by (1). The vector function we are
approximating is

~f(x, y) = {
1

(1 + x2)(1 + y2)
,

1

(1 + x2)(1 + y2)
} (6)

Figure 2 shows the x-component of the function ~f , the interpolation f̃p using the approach from
[5], and the new approach using extended Chebyshev polynomials. Note how the new approach
has significantly reduced oscillations at the boundary of the interpolation domain, with a maximum
error that is several times smaller than the original approach.
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Figure 2: x-component of Exact function (left), Shifted Silvester approximation (middle) and Ex-
tended Chebyshev approximation (right)

Now consider a mapping ~y = Φ(~x) that maps the reference hexahedron to an arbitrary (non-twisted)
hexahedron. The order of this mapping need not be the same as the order of the 1-form bases. We
define the Jacobian of this mapping as

Ji,j =
∂yj

∂xi

(7)

For interpolatory 1-form basis functions the degrees-of-freedom are “interpolation vectors” rather
than simple points. These degrees-of-freedom are dual to the basis functions, meaning that (W 1,p

i , bj) =

δi,j where W
1,p
i is the i′th basis function, bj is the j′th interpolation vector which is zero every-

where except at a single interpolation point, and (, ) is an integral in the distributional sense. For
1st order 1-forms on the reference hexahedron the interpolation vectors are tangent to the edges
and centered at edge midpoints, for higher order bases these interpolation vectors may lie on the
element faces or in the interior of the element. Under the mapping ~y = Φ(~x) these interpolation
vectors transform contravariantly and will remain tangent to the edges (or faces) of the element.
The 1-form basis functions transform covariantly and do not remain tangent to the element edges
(or faces). In the finite element solution of Maxwell’s equations, the curl of the basis functions are



required. The curl of a 1-form is a 2-form, and 2-forms transform according to the Piola transfor-
mation [4]. Given these transformations the bases need only be evaluated on the reference element
and transformed accordingly. These transformations are summarized in Table 1.

Object Transformation Formula
Interp Vectors Contravariant b̂ = JT b

Basis Functions Covariant Ŵ = J−1W

Curl of Basis Piola ˆdW = 1
|J|J

T dW

Table 1: Summary of transformations

3 Conclusions

The explicit formulae for arbitrary order 1-form interpolatory bases developed in [5] are based upon
Silvester-Lagrange polynomials. It is well known that these polynomials have the potential to exhibit
erratic behavior as the order p increases due to their rapidly increasing Lebesgue constants. In
this paper we present computed Lebesgue constants for these 1-form bases and for new bases that
utilize interpolation points based on the zeros of Chebyshev polynomials. These new bases have
significantly smaller Lebesgue constants (near optimal), and we show by example that this directly
affects the interpolation error. We show that for large p, the interpolation error for non-uniform
bases can be orders of magnitude smaller than that of uniform bases. The procedure presented here
is generic in the sense that any interpolatory polynomial can be used. This generality is achieved
by constructing the 1-form basis function on a reference element and transforming to the actual
element using appropriate transformation rules. The appropriate transformation rules are conceived
by identifying the interpolation vectors as tangent vectors, the basis functions as 1-forms and the
curl of the basis functions as 2-forms.
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