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A Novel Approach for Computing Solenoidal Eig genmodes

Helmholtz Equation

Danicl A. White and Joseph M. Koning
Lawrence Livermore National Laboratory

Abstract -
for computing solenoidal eigenmodes and the corre-

In this paper we present a novel method

sponding eigenvalues of the vector Helmholtz equa-
tion. The method employs both vector and scalar fi-
nite element basis functions to yield a discrete gener-
alized eigenvalue problem that can be solved by stan-
dard iterative techniques. The technique is applicable
for analysis of 3D inhomogeneous resonant cavities.

I. INTRODUCTION

We are interested in determining the electromagnetic
fields within closed perfectly conducting cavities that may
contain dielectric amd/or magnetic materials. The vector
Helmholtz equation is the appropriate partial differential
eqiation for this problem. It is well known that the clee-
tromagnetic Helds in a cavity can be decomposed into dis-
tinct modes that oscillate at specific resonant. frequencies,
These modes are referred to as eigenmodes, and the fre-
quenc ies at which these mutl( s oscillate are referred to as

4 " : “ppm ation is the dll(u\‘uls
nflmmt d(ttl('mt(n mmpt)nonts These components have
complex geometry, hence unstructured finite-clement type
grids are used to model the geometry.

Numerous researchers advocate the use of H(curl) vec-
tor finite clements (also know as edge, or Nedelee ele-
ments) for solving computational electromagnetics prob-
lems on unstructured grids [1] [7]. The H(curf) vector
finite elements enforee tho tangential continuity of fields,
but allow junp discontinuitios of the normal component
of ficlds, w lmh is eqmrml for modeling electromagnetic
fields in inhomogencons regions. In addition H(cur!) vee-
tor finite eleents aceurately model the null space of the
curl operator, which haq been shown to l)(* essential for the
elimination of so-called * " frequency do-
main clectromagnesics [8] and charge conservation in time
domain electromagnetics [9).

‘5})!11 ious modes

Electromagnetic eigenvalue problems can be solved us-
ing H(eurl) vector finite elements. Typically the Galerkin
procedure is used to derive a discrete form of the electric
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field vector Helmholtz equation, resulting in a sparse, gen-
eralized eigenvalue problem. For small problems standard
dense-matrix eigenvalue algorithms such EISPACK [11]
can be used to compute all of the ecigenfrequencies and
eigenmodes. For large problems iterative methods such
as Lanczos or Arnoldi are preferred [14]. These iterative
methods take advantage of the sparsity of the matrices,
and in addition they allow the user to efficiently compute
a small set of extremal cigenvalues (largest or smallest).
In practice the user is interested in the smallest eigenval-
tes and thv corresponding ('Lgmmmdos as these are often
b les. Tn udthtmn. due to the inherit dis-
cretization error of hmte' element methods, only the small-
esteigenvalues and corresponding eigenmodes are acen-
rate.
The diffienlty in applying  general-purpose  itera-
tive cigenvalue solvers towards the H{curl) diseretized
Helmholtz equation is that this equation has a large num-

INGAes

ber of zero-valued eigenvalues, corresponding to the irro-
tational s()]lltl()ll\ of the Hvlm}m!t/ vquah(m This degen-
: 3 Hhods to fail to
converge to the desired HII]d]l(‘Ht non-zero cigenvalnes. In
[15] it was argned that if the initial vector used to start
the Lanczos iteration were orthogonal to the null space
of the curl operator than the iteration would converge to
the desired solenoidal cigeumode with smallest eigenvalue.
While this is trie in exact arithmetic, in finite precision
arithmetic this process is not numerically stable. For rela-
tively small problems with »n 2= 1000 even double precision
is not good enough to achieve convergence. A modified
Lanczos algorithm was proposed in [16] that applied a
projection operator to the Lanczos vectors at every iter-
ation to remove any irrotational components. While this
method may indeed be effective for modestly sized prob-
lems, it is not clear thai the
projection operation requires that a Poisson equation be
sobved to machine precision at every iteration of the Lane-
zos method, and this becomes increasingly difficult as the
dimension of the problem increases. In [13].[17], [18] a
spectral transformation is proposed snch that the desired
smallest non-zero eigenvalues become the extremal eigen-
values.  This procedure is mimerically stable and is an
effective technique for achieving converge to the desired
elgenvalues, In fact the authors of the ARPACK iterative
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cigenvalue solver package recommend this approach for




computing interior eigenvalues [13]. The disadvantage of
this approach is that the solution of the modified cigen-
value problem requires repeated inversion of a matrix that
ean be quite ill-conditioned,

In this paper we present an aliernative formulation of
the electromagnetic eigenvalue problem in which the vero-
valued elgenvalues, corresponding to the irrotational solu-
tions of the Helmholtz equation, are arbitrarily shifted to
the middle of the spectrum. Thus the desired ecigenvalues
are now extremal and standard iterative eigenvalue solvers
¢an he emploved without modification. The new formmla-
tion employs both H{curl) vector finite elements and the
standard nodal scalar finite elements. In the sections fol-
lowing we first review the vector Helmholts equation and
the alternative discrete formmlation of the problem. Then
we present results for several simple conical problems in
order to validate the approach, and we finish with a real
application, that of a 3D inhomogeneous lincar aceelera-
tor induction cell.

II. VECTOR HELMHOLTZ EQUATION

A. Continuvons Cuase

We are interested in solving the vector Helmholty, equa-
tion in a 3-dimensional inhomogencous volume (2,

Vxp ' VxE—w?eE=0in(Q, {n

with houndary equation 7t x E = 0 on 092, where E is the
electric field vector, g and e are the tensor permeability
and permittivity, and w is the radian frequency. Equation
(1) admits to two types of solutions; irrotational field so-
lutions and solenoidal field solutions. An irrotational field
is the gradient of a scalar potential function

ol — 53
L = — V. 1<)

Inserting (2) into (1} we see that w = 0 for irrotational
fields. Conversely, by taking the divergence of (1) we see
that if w # 0 then the field must be solenoidal,

V-eE, =0. (3)

Since the permittivity may not be continuous, equation
(3) 1s best understood in the variational sense: we nalti-

P + and .
)
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ro ot the bound-
ary, and then integrate over the domain 2 and employ the

divergence theorem to yield

/ eF, Vo =0 {4)
Jq2
Equation {1) states that a solenoidal solution of (1) is or-
thogonal to every irrotational ficld. Therefore soliutions
of (1) can be decomposed into irrotational (w = 0) and

I PO L T T SR S S A UL SRRSO TN VRIS DS SRS T
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tion being orthogonal to every irrotational solution.

B. Discrete Case

We discretize the electric field using a H{cur!) finite ele-
ment space W of dimension n defined on a mesh. We as-
sume H (eurl) vector finite elements of the form proposed
in [1], although the degrees of freedom can be modified
{(hicrarchical vs. interpolatory, ete.) without any effect
on the conclusions to follow. In the numerical simula-
on V. we etploy Ist-order elements; again
the use of higher-order finite eletnent basis functions does
not modify premise of this paper. The discrete electric
field £ is given by

tions in Scc

n
E=Y"el, (5)
i=1
where the vector ¢ € R™ is the vector of degrees-of-
freedom (DOF). There is a one-to-one correspondence he-
tween £ and e. We denote the computation of E given ¢
as e - E and the computation of ¢ given E as E = e.
Note that = is a projection and can be applied to any
clectric field £ € H(eurl), henee the computation of the
approximate ficld E given an arbitrary E is denoted by
E_j = ¢ — E
Assume that the boundary condition i x E = 0 is built
imo the space W, Employving the Galerkin procedure to
(1) results in a generalized eigenvalue problem

Ae = o Be, {6)

were the matrices A and B are given by

AU:/“*va,vxﬁﬁ (7)
40
BU:/AEJE. (8)
$1

The details of the computing the inner products and fill-
ing the sparse matrices can be found in finite element
textbooks [19], [20] (note that the vector finite elements
discussed in [20] are different the the eleinents used in this
paper).

An important property of the H{eurl) vector finite ele-
ment method is that the discrete Helmholtz equation (6)
has the same decomposition of solutions as the original
PDE. Let L" ¢ H,| be the space of standard nodal finite
element basis functions of dimension & defined on the in-
terior of the mesh and of the same order as the H{curl)
clements W (in this paper we refer to the H{curl) ele-
ments as having integer order as per [1], rather than as
“half-order™). Define the subspace

l?ﬁ:{ﬁelﬁ“YTxn:U}. (9)

It can be shown that the finite element spaces L and 117
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basis function can he writien as a linear combination of
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H(eurl) elements with zero curl [1]. This is often referred
to as an inclusion condition [10], it is a discrete version of
the vector identity V x V¢ = 0. Define the vector spaces

:{feR",qSe L-h,&:)f} (10)
and
V= {‘UER",E;, E”,’:,E ::»u}. (11)

The discrete gradient operator is a sparse n by k matrix
P such that

v=Pf, where ve V and f € F. (12)
The vectors ¢ € V7 form the null space of the stiffness
matrix A,

APf =0 forall fe F. (13)

Therefore there are exactly k solutions of (6) with w = 0,
these are the static solutions of (6) with non-zero diver-
Benee.

Assime we have a discrete solenoidal solution ro (6),
Lo, a vector u that satisfies

Au = Bu with w # 0. (14)

Multiplying {14} above by an arbitrary irrotational vector
v €17 gives

. - .
vTAu= fTPTAu = f"P'Bu=10 (15)

N

the discrete solenoidal solutions of {6) are orthogonal to
the discrete irrotational solutions aceording to the inner
product ! By. Note that the product

f'P"Bu=0 (16)

is exactly the discrete version of (4}, the discrete
solenoidal solutions w satisfy a discrete divergence-free

condition. Equation (15) defines

Wk, = (u *‘)

s the solenoidal spaces

(17}

U= {u € R". E.me€ If’:t,,._ Eoo = u.} . (18)

In summary, we have the decompositions Wk = lf‘,’j, +
W hyand R = U 4+ V. The space V7 of dimension & is
the null space of the stiffness matrix A4 and corresponds to
irrotational solutions of (61, the space I7 of dimension (1 —
k) (()ut‘s])on(ls to the H(}l(‘tl()lddl solutions. Every solution
as {16

IR P ALY

METHODS FOR EIGENVALUE
PROBLEMS

III. ITERATIVE

rithm is a [)()])llldl m(‘thod for (()mputmg vxtremdl eigen-
values of a symmetric matrix A. The Lanczos algorithm
can be applied to generalized eigenvalue problems of the
form Axr = ABur, where A is symmetric and M is symmet-
ric positive definite, if the inner product < z,y >= +' My
is used. If the matrices A and M are not symmetric (as
would result for some lossy electromagnetic media) the
Arnodli algorithm is appropriate. The Arnodli algorithm
reduces to the Lanczos algorithm when A and M are sym-
metric.

In electromagnetic applications it is a common desire to
compute a small set (i < 50) of dominant eigenvalues and
cigenmodes, not simply the most dominant mode. “ lulo
the standard Lanczos and Amo
for computing extremal eigenvalues, the convergence to-
wards interior elgenvalues is poor. A solution is to restart
the iteration several times with new initial iterates, this is
the basis for recently developed implicitly restarted Lanc-
z0s/ Arnoldi methods as exemplified by the ARPACK soft-
ware library [12],[13]. We propose the use of ARPACK for
computing m dominant eigenvalue/eigenfrequency pairs,
where m is a user specified mumber. To compute these
cigenvalue /eigenfrequency pairs the required storage is

- O0m) + O0n?) where nis the dimension of the ma-
trices.  This is significantly less storage than would be
required by a standard Lanezos/Arnoldi iteration. The
dlg(nlthms in ARP%CI\ :!llf()llldtl( ally 1 (‘stdtt Wltll a new

. It
enhances convergenee in the dn('( tion of the (lvsn('d eigen-
values. The algorithm terminates when all e eigenvalues
kave converged to within a user-specified tolerance. The
number of restarts required for converge of all e cigen-
value is problem dependent.

Although implicitly restarted Lanczos/Arnoldi meth-
ods are superior to their non-restarted counterparts, these
methods still have dificulty with our gencralized eigen-
valne problem (6) due to the very large number of de-
generate cigenvalues at w = 0. In the next section we
propose a modification of the diserete form of the vee-
tor Helmholtz equation that essentially moves the w =0
(’lg(‘ll\'d]ll(‘H towards the center of the spectrum with no

1 the solenoidal eige envalues, and hence ARPACK

offect o
can then be used without modification to compute the
desired solenoidal eigenmodes and corresponding, cigen-

frequencies.

IV. MobpiFien EiGexvaLtuy EQuartioN

First, consider Gauss’ law in an inhomogeneons volume
£

—

Vel =p, (19)




where p is the charge density. The electric field and the
scalar potential are again approximated by E € W and
¢ € L*, and the charge density is 1})[)r()¥1mat('d by p €

k) v
U o Herlein meemdira
L' Applyving the Galerkin procedure yvields the
equation
Qe = Nr, (20}
where £ = e and j = r, aud the mairices are given by

Q,'J' = / FI_"J - VL,‘, (21)
Y
NU = L,LJ (22)
JQ

As discussed in Section ILB. above the matrix Q = P'B
where P is the discrete gradient operator that maps F to
V. Clearly, from (16) the null space of @ is U, the space
of discrete solenoidal vectors.

Using (20) above we form a generatized eigenvalue prob-
letn

Q' 'N-'Qe = A’Be. (23)

The matrix Q'N='Q is a square n by n matrix that can
be considered to be a discretization of ¥ (T FE) The

our original ])l()blt‘l] (6} l)ut (l()(‘H Nnot NeCeSSATY represent
anvthing physical. It is huportant to note that the spec-
trum of (23) is exactly opposite of the spectrum of (6), i.c.
cquation (23) has exactly {n — k) A = 0 cigenvalues and
the corresponding cigenmodes are the solenoidal vectors
U, and rthere are exactly k eigenvalues with A > 0 and the
corresponding eigenmodes are the irrotational vectors 1.

The matrix Q'N7'Q can be used to shift the irro-
tational cigenmodes of our orignal problem withont any
effect on the desired solenoidal eigenmodes. Specifically,
we form the modified generalized cigenvalue problem

(A+sQ'N7'Q) e = wBe, (24)

where s is a user-specified parameter that shifts the irvo-
tational eigenmodes to the middle of the spectrum. From
dimensional analysis the smallest non-zero eigenvalue of
(6) is approximately equal to the smallest non-zero ('ig('n-
ihie of {23} therefore

cient to move the spurions eigenmodes,

In Equation (24) it is not necessary to actnally invert
the matrix N, it is sutficient to approximate the inverse by
mass lumping. This has no effect on the desired solenoidal
eigenmaodes. From a purely linear algebraic point of view
(24) can be written as Ze — w?Be, where Z is a svinmet-
ric positive definite matrix. We have thus formulated the
electromagnetic eigenvalue problem such that existing it-
crative solvers such as ARPACK can be nsed to compnte

N T P N 1 T T P e
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solenoidal elgenmodes without modification.

V. REsuvLrs
A, Inhomaogeneous Rectangular Cavity

In order to demonstrate the efficacy of the above de-
scribed algorithin we begin by analyzing the inhomoge-
neous cavities described in Section A. of [16]. These three
rectangular cavities contain both a vacuum region and a
In [16] the dominant eigenfrequency for
these three cavities was computed using FDTD, a tetra-
hedral grid H{curl) FEM, and an analytical methed, with
agreement to within (.33 percent. We modeled these cav-
ities using a Cartesian mesh and the lincar H{cnrl) finite
elements defined in [1] along with the standard bilinear
nodal finite elements. Since we are using a lower-order
finite element basis function we used a mesh consisting of
15120 zones, which results is a significantly larger general-
16 We emnh

1<)
Sl

dielectrie region.

ized ecigenvalue problem than that zo
that the purpose of this experiment is to validate the al-
gorithm defined in Section IV. above, we are not advocat-
ing the use of lower-order finite element basis functions.
We used ARPACK to compute the smallest eigenvalue
of (24), and within ARPACK we used the simple Jacobi-
preconditioned conjugate gradient method to “invert”™ the
B matrix within every Arnoldi iteration. Our computed
results agreed to the analytical results presented in [16]
to within 4 decimal places.

B Homogenons Sphere

In this section we present results for a simple homoge-
i ¥t ical solution
Althongh this scems like a trivial problem, it is in fact
difficult due to the numerous degenerate eigenvalues. A
sphere of radius 0.05855/m was modeled using an 55296
zone unstructured mesh. This corresponds to about 36
zones per sphere radius, Linear H{curl) finite element ba-
sts functions were wsed, resulting generalized eigenvalue
problem had n = 162528, In this analysis we assume the
speed of light is unity. The 20 smallest cigenvalues are
shown in Table 1, along with the exact solution and the
corresponding error.

C. Acecelerator covity

Ay a real application of the algorithim proposed in this
paper we compute the 20 lowest elgenmodes of a linear
accelerator induction cell. Of particular interest is the
magnitude of the field in the accelerating gap, as this de-
termines whether or not the particular mode will couple
with the electron beam. Part of the cell i
other part consists of o1l with a relative permittivity of
The induction ecell was modeled using a 330124
which u'snlt(d m

15 vacungin, an-

€ = L5,
zone unstinctured hexahedral mesh,
generalized elpenvalue
(e - el

)]
ARPACK was used 1o compte

dilnension ¢

the 2(

problem of «

Again, llldlll"-at




Mode | Exact | Computed | Percent Error
TMI11 | 2196.39 2200.44 0.184
TMI11 | 2196.39 2200.44 0.184
TMI1 | 2196.39 | 2200.44 0.184
TM21 | 4368.84 | 4382.21 0.306
TM21 | 4368.84 | 4382.21 0.306
TM21 | 4368.84 [ 4384.45 0.357
TM21 | 4368.84 | 4384.45 0,357
TM21 | 4368.84 | 4384.45 0.357
TE11 | 5888.69 5911.07 0.380
TE11l | 5888.69 | 5911.07 0.380
TE11 | 5888.69 | 5911.07 0.380

TM31 | 7214.14 7248.11 0.470
TM31 | 7214.14 724811 0.470
TM31 | 7214.14 | 7248.11 0.470
TM31 | 7214.14 | 7248.11 0.470
TM31 | 721414 | 7252.40 . 0.530
TM31 | 721414 | 7252.40 0.530
TM31 | 721414 | 7252.40 0.530
TE21 | 9688.19 | 9731.82 0.450
TE21 | 9688.19 | 9731.82 0.450

TABLE I

Exact vs. computed eigenvalues for 36 zone per radius sphere

eigenvalues of the modified generalized eigenvalue prob-
lem (24). In order to visualize the eigenmodes the magni-
tude of the electric field at the zone-center is computed.

For example, Figures 1-4 shows the 1st, 5th, 13th, and
b atpanmnnadas AF R ey 11 Tor +hnan 1iiaden
Vil Clsl‘:lllll\)\lt,a 1 L1y G 1k 411 LIIEHE LITUSLLD a-

ical solution to compare to. Although lt may be dlﬂi(‘ult
to discern from the illustrations, the 1st and 20th modes
have a maximum electric field magnitude in the accelerat-
ing gap and hence will couple strongly with the eiectron
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Fig. 2. 5th eigenmode of induction cell, f = 280M Rz




